International Union of Crystallography

Commission on Crystallographic Apparatus

Microdensitometer intensity project

Microdensitometers are now widely used to measure the intensities of reflections from single crystals, particularly where large unit cells are concerned. The Commission on Crystallographic Apparatus has decided to make a study of the performance of existing instruments, similar to that undertaken some years ago for single-crystal diffractometers.

All crystallographers using microdensitometers are cordially invited to take part in the project. Though the main aim is to evaluate automatic instruments, laboratories with manual densitometers can also participate.

Two sets of screened non-integrated precession films containing reflexions with two different spot sizes will be distributed. Each set contains two films with different exposure times. Thus each participant will have to measure four films. The film sets will be circulated as long as they are considered to be undamaged. A standard scale exposed on a film of the same batch will be provided.

The results of the measurements shall be delivered on cards in the form of centered x, y coordinates, indices, integrated intensities and, if possible, estimated intensity errors. In addition scaled intensities from the films with different exposure times should be given.

Crystallographers interested in taking part in the project should contact the following Commission member: Professor Sixten Abrahamsson, Department of Structural Chemistry, Faculty of Medicine, University of Göteborg, P.O. Box, S-400 33 Göteborg 33, Sweden.

Structure Reports

Four more volumes of Structure Reports have just been published. With the volumes referred to in the January issue [Acta. Cryst. (1976). A32, 174] they bring this indispensable series right up to date, covering all the literature up to the end of 1973. The latest volumes to be published are:

Orders for these volumes, and for the earlier volumes including those published in late 1974 and early 1975, may be placed direct with the publisher (Oosthoek, Scheltema & Holkema, Emmalaan 27, Utrecht, The Netherlands), with Polycrystal Book Service, P.O. Box 11567, Pittsburgh, Pa. 15238, U.S.A., or with any bookseller. Details of price reductions for personal subscriptions and for standing orders may be obtained direct from Oosthoek, Scheltema & Holkema or from Polycrystal Book Service.

Book Reviews

Works intended for notice in this column should be sent direct to the Book-Review Editor (J. H. Robertson, School of Chemistry, University of Leeds, Leeds LS 2 9 JT, England). As far as practicable books will be reviewed in a country different from that of publication.

Many ideas are packed into this 234 page review of crystal chemistry and materials science. In addition to conventional solid state topics, several recent effects and applications are briefly described, for example semiconductor lamps, bubble memories and superionic conductors, and the properties of many complicated solids are discussed. Tables and diagrams support terse qualitative descriptions of the phenomena, and there is a sprinkling of formulae, few of which are derived. The overall effect is of a sustained essay giving a broad up-to-date insight into the diversity of solid materials, but there is insufficient detail to explain satisfactorily many of the subtle concepts involved, and the book tends to give the impression that things are much simpler than they really are. Occasional lapses also appear: for example, the units of the diffusion coefficient (a quantity never satisfactorily defined) should be cm2/sec, not cm/sec in Fig. 26. Though the book cannot be recommended as a text for solid state courses, it could provide useful background reading to broaden the perspective of graduate students studying some particular branch of materials science and technology.

J. A. D. Matthew

Department of Physics
University of York
Heslington
York YO1 5DD
England

This textbook originates from lectures actually given by the authors, and combines in an original way an elementary exposition of classical crystallography (i.e. the structure of