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The difficulties in relating any diffraction theory to the defect structure of 'real crystals' used in crystallography are 
discussed qualitatively and it is shown that most of these problems become less severe in structure factor measurements 
by means of ),-ray diffractometry. Probably more direct information on the defect structure of the samples used in 
accurate diffraction experiments is needed in order to improve the situation. At present and probably for the near future 
it seems best to design experiments where extinction is only of the order of 10% or less. 

Introduction 

In order to correct for extinction in crystal structure deter- 
mination from diffraction data most experimentalists use 
Zachariasen's theory (1967, 1968). Recently improvements 
in this theory have been made (Becket & Coppens, 1974), 
and have been of importance in charge density studies. How- 
ever, from a theoretical point of view these theories are not 
very satisfying because from the outset they are limited to 
intensity coupling between incident and diffracted radiation; 
in particular, the treatment of primary extinction seems to be 
oversimplified (Werner, 1974). 

At the Tenth International Congress of Crystallography in 
Amsterdam Zigan (1975) and Kato (1975; see also Kato, 
1976) presented extinction theories based on Tagaki-Taupin 
wave equations (Tagaki, 1962, 1969; Taupin, 1964). In 
principle Kato's theory describes a full transition from 
dynamical to kinematical behaviour. However, because of the 
mathematical difficulties in working with correlation lengths 
z,, which describe the assumed statistical nature of the crystal 
imperfections, of order n > 2, up till now the theory is valid 
only when extinction is small. Very recently Kuriyama (1975) 
has compared a classical derivation of the dynamical diffrac- 
tion equation for imperfect crystals with his general dynam- 
ical theory derived with the aid of quantum-field theory. He 
shows that a number of assumptions made within the so- 
called classical approach are not necessary in the deviation 
based on quantum-field theory. 

Whereas apparently a big effort has been made in recent 
years to develop new diffraction theories for imperfect single 
crystals it seems that much less has been done to correlate 
these theories with the defect structure of the samples via 
measurable quantities which describe the degree of imperfec- 
tion of the crystal. Therefore diffraction theories based on 
Darwin's (1914, 1922) mosaic model, which in general is a 
very crude approximation to the defect structure in single 
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crystals, are still widely used in crystallography for the inter- 
pretation of diffraction experiments. 

In this paper Darwin's (1914, 1922) extinction theory is 
presented in terms of an 'absorbing-hole mosaic model', 
because on one hand this theory still represents the basis of 
the terminology used in the discussion of extinction, and on 
the other hand it is used in the interpretation of intensity 
measurements performed by means of ),-ray diffractometry, 
which will be described afterwards. 

Extinction 

A single crystal will be called imperfect if the integrated re- 
flecting power Rm measured with radiation of wavelength 2 
at a given reciprocal lattice point H is smaller than the 
theoretical value Rki  n calculated on the basis of the 
kinematical theory, and larger than the value Rdyn deter- 
mined from the dynamical theory for a defect free crystal 
of thickness to much larger than the extinction length text 
defined below: 

Rki  n > R m > Rdy n . (1) 

If R m = R d y  n the crystal is called perfect, if Rm = R k i n  the 
crystal is called ideally imperfect. The difference between 
Rki n and Rm is called extinction and is discussed in terms of 
an extinction coefficient 

Rm 
y = ~ < 1, (2) 

which depends on the defect structure of the sample as well 
as on the wavelength 2 of the diffracted radiation, the struc- 
ture factor Fn, the Bragg angle OB and on the sample thickness 
to. For simplicity only symmetrical Laue scattering geometry 
is considered and the radiation is assumed to be unpolarized. 

For extremely thin defect-free crystals dynamical and 
kinematical theories give the same value for the integrated 
reflecting power: 

t~imOgdyn= Rkin" 

On the other hand, in order to show dynamical diffraction 
behaviour the crystal thickness must at least be of the order 
of the so-called extinction length 

V 1 
text (3) 

ro FH2' 
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with ro = classical electron radius and V= volume of the unit 
cell (Zachariasen, 1945, § I I I  11: A--1). In the dynamical 
theory a defect-free crystal is called 'thick' if t~x, ~ to "~ 3t~x,, 
where t~xt means the extinction length calculated for X-rays 
of, for example, 2 ~ 1 ~,. For negligible absorption its peak 
reflectivity is 50~, which is not further increased if to ~ 10t~x,. 
In other words the dark part of the crystal sketched in Fig. 1 
does not contribute to an increase of crystal reflectivity. For 
the diffraction of ~,-radiation of much shorter wavelength 
(2~0"03 A) the same crystal may behave as an ideally im- 
perfect crystal because t '~xt~trext,,~3to~to . This shows that 

'L, 

Fig. 1. Schematic representation of the diffraction process in 
symmetrical Laue geometry in a defect-free single crystal with 
/-exxt'~ t o '~ t~x t. t 0 is the thickness of the sample, text and te~xt represent 
the extinction lengths for the diffraction of X-rays and ?,-rays 
respectively. The dark region represents that part of the crystal 
which does not contribute to an increase of the reflectivity in the 
case of X-ray diffraction. Po=intensity of the incident beam, 
Pa-Bragg diffracted intensity, Pr=intensity of the primary 
beam after transmission through the crystal. 

PH PT 
Fig. 2. Schematic representation of the diffraction process in 

symmetrical Laue geometry in a mosa/c crystal. The mean thick- 
ness to of the mosaic blocks is assumed to be much smaller than the 
thickness To of the sample. Po=intensity of the incident beam, 
Pn=Bragg diffracted intensity, Pr=intensity of the primary 
beam after transmission through the crystal. 

the degree of imperfection as defined above, or the degree of 
extinction, is extremely wavelength dependent. Freund 
(1973) found in copper crystals with different dislocation 
densities a full transition from dynamical to kinematical 
diffraction behaviour by varying the wavelength from 1-3 to 
0"03 ]~. 

Darwin's mosaic model 

The imperfect crystal of thickness To is assumed to be an 
aggregate of a great number of independently scattering 
perfect crystal blocks of thickness to '~ To as indicated in Fig. 
2. The absorption in a perfect block is assumed to be negli- 
gible. The deviation of the lattice-plane orientation co of one 
block from the mean lattice-plane orientation co o for the 
whole crystal is described by means of the so-called mosaic 
distribution function W(co), which is a probability function: 

t oo W(coo- co)dco = 1. (4) 
- o o  

W(co) was assumed to be a Gaussian distribution function 
and its full width at half maximum is called the mosaic 
spread AtoM. In his diffraction theory Darwin assumes the 
half-width W~yn of the diffraction pattern for the perfect 
mosaic blocks to be much smaller than the mosaic spread 
AtoM, which is a limitation imposed by his mosaic model: 
adjacent mosaic blocks are separated mainly by dislocations 
which cause lattice tilts and therefore increase the mosaic 
spread. If W~yn ~ Ao)M it is difficult to imagine how adjacent 
blocks are separated from each other and the quantity to 
looses its physical meaning. 

On the basis of this model Darwin formulated the well- 
known intensity transfer equations: 

dPo 
- -  Y o P o - a P o + a P n  dT 

(5) 
dPn 

- / t o P n -  a P a  + o 'Po.  dT 

Po(T)  and P a ( T )  represent the power of the incident and 
diffracted beams respectively at depth T, Yo is the total linear 
absorption coefficient. For the coupling constant o-, which has 
to be a function of the rocking angle ~o, one obtains 

if(f.O) = W((.o) Rdyn: . (6) 
to 

gO is the mean block thickness, R~y n represents the integrated 
reflecting power calculated with the dynamical theory for a 
perfect plane parallel plate of infinite lateral extension and 
thickness to. 

Secondary extinction 

Some of the basic problems with Darwin's extinction theory 
and his mosaic model become less important if one can 
assume text>>go. Then R*ayn=Qto/COS 0 B and the coupling 
constant a(co) becomes independent of the size of the perfect 
blocks: 

0"(09) = W(og) Q 
cos 0B (7) 

F 2  23 1 + cos 2 20B 
Q = r2 sin 20B" 2 (8) 
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The solution of Darwin's intensity transport equations leads 
to the following expression for the theoretical reflectivity 
distribution: 

rth(~)=½{1--exp [--2a(co)To]} exp (--I~oTo/cos OB). (9) 

If W(co) is assumed to be Gaussian the integrated reflecting 
power Rth is calculated to be 

R t h  =--- (rth(CO)dco = y s R k i n  (1 O) 
3 

Rkin = Q & exp ( -- #o T0/cos 0n) (11) 

ys=exp (-gQTo/cOs 0B); g = c o n s t . -  
1 

(12) 
Aa~t" 

Ys is the coefficient for secondary extinction. The defect 
structure of the sample is represented by the mosaic spread 
Ao)M alone. In order to measure the mosaic distribution 
function W(m) directly in a diffraction experiment, extinction 
has to be very small, as can be seen immediately from a 
first-order approximation to r,h(o)): 

To ] (13) t'th((.O ) " ~ '  eki  n W(£o) 1 - W(co)Q ~ . 

Fig. 3 shows a series of rocking curves measured with 0.03 ,~ 
~,-radiation in neighbouring volume elements of a tungsten 
single crystal 0.9 mm thick, 3 mm in width and 15 mm in 
height. The extinction factor was y-,~ 0.85. The corresponding 
mosaic distribution functions W(co) are of very irregular 
shape and vary strongly within the sample. Therefore a(co) is 
not constant all over the sample for a given co as was 
assumed for the solution of Darwin's intensity transport 
equations. 

Secondary  extinction in crystals  with inhomogeneous  
mosa ic  structure 

Systematic investigations of a large number of imperfect 
single crystals by means of ~-ray diffractometry have shown 
that an inhomogeneous mosaic structure of the type depicted 
in Fig. 3 is not unusual. In order to estimate the influence of 
these inhomogeneities on the extinction correction it is useful 
to distinguish between two types of inhomogeneities 
(Schneider, 1975a). As indicated in Fig. 4 the irradiated 
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Fig. 3. Rocking curves measured with 0"03 • y-radiation in neighbouring volume elements of a tungsten single crystal. Reflexion 220. Cross 
section of the incident beam 0.2 × 10 mm, angular resolution in the scattering plane, 10". Distance between neighbouring volume elements, 
0"3 mm. 
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crystal volume v is assumed to consist of two parts v~ and 
v2 with different values of tr(o)) for o) = constant. The in- 
homogeneity is of type A if the interface between vl and v2 is 
perpendicular to the diffracting lattice planes and parallel 
to the surface of the plane parallel crystal plate. The in- 
homogeneity is of type B if the interface between vl and vz is 
perpendicular to the crystal surface and parallel to the lattice 
planes. 

It can be shown that type A inhomogeneities will not have 
an important influence on the diffraction properties of the 
crystal (Schneider, 1975a). The inhomogeneities in the 
mosaic structure shown in Fig. 3 are at least partly of type B 
and the theoretical reflectivity distribution tin(co) can be 
calculated in two different ways: After averaging over the 
local W(e)) one obtains a mean mosaic distribution function 

TypeA [crystal 

• pr imary beam 

.orientation of the 
/ / "  lattice planes 

Type B ] crystal 

~ pr imary beam 

Fig. 4. Schematic representation of type A and type B inhomo- 
geneities in the mosaic structure of real crystals, a is the coupling 
constant in Darwin's energy transfer equations. 
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Fig. 5. Reflectivity distributions of a copper single crystal calculated 
for different values of Q' = Q/cos 0n by means of Darwin's extinc- 
tion theory for negligible primary extinction, rth(CO)=calculated 
diffraction pattern when inhomogeneities in the mosaic structure 
of type B are taken into account, r~h(O))=diffraction pattern 
calculated assuming the mosaic structure to be homogeneous. 

W(co) from which one can calculate a theoretical reflectivity 
distribution r,h(C0-'--~ for the whole crystal. On the other hand 
from the different W(~o) one can first calculate local reflec- 
tivity distributions, which are averaged afterwards as done 
by the detector in a diffraction experiment in order to get the 
mean reflectivity distribution r,h(m). As shown in Fig. 5 for a 
copper crystal where 24 local mosaic distributions were 
measured, r,h(m) -< ~ for all rocking angles o4 which leads 
to the relation 

Rki n ~ R~h ~ Rth (14) 

for the corresponding values of the integrated refecting 
power. Type B inhomogeneities cause an increase of the 
amount of secondary extinction and the extinction factor Ys 
can be split in two parts: 

R t h  - -  Y'sY's'. (15) 
y s -  Rkin 

* 

ys = R t h / R k i  n is related to the amount of secondary extinction 
occuring in the crystal if the mosaic structure is assumed to 
be homogeneous, y's'=Rth/R~h represents the increase in 
secondary extinction due to inhomogeneities of type B. 
It seems difficult to develop a generally applicable diffraction 
theory for imperfect single crystals having an inhomogeneous 
mosaic structure, and at present it therefore seems more 
promising either to do diffraction experiments with a radia- 
tion of very short wavelength, so that extinction becomes a 
small effect, or to improve the defect structure of the sample. 
Measurements where only small extinction was encountered 
are discussed below, and an example of the latter approach 
is the study of the change that occured in Nb single crystals, 
when they were loaded with deuterium gas (Schneider & 
Stump, 1975). Thirteen rocking curves were measured by 
means of ),-ray diffractometry in different volume elements 
of a cylindrical Nb crystal 1-3 cm in diameter and 2.8 cm in 
length. The two local mosaic distributions W~(m) and Wz(m) 
plotted in Fig. 6 show the degree of inhomogeneity in the 
mosaic structure of the sample. W(o)), the average over all 
local distributions, shows that the overall mosaic spread is 
Am~t -~ 3'. Pure niobium has a b.c.c, structure and can absorb 
large quantities of hydrogen and deuterium. From the phase 
diagram one knows that at room temperature the deuterium 
can be dissolved in the cubic ~ phase up to an atomic ratio of 
D/Nb~0.02.  For larger D/Nb atomic ratios a /3 phase 
precipitates which has an orthorhombic structure. This has 
been studied extensively by Schober, Linke & Wenzl (1974; 
Schober, 1975a, b). The occurrence of a/3 metal hydride seems 
to be responsible for the drastic changes in the mosaic struc- 
ture of the niobium crystals, as shown in Fig. 7 for five 
samples containing different amounts of deuterium. The 
mosaic structure of the samples appeared to be very homo- 
geneous for all the different concentrations of deuterium. 
The local mosaic distributions W(0~) differ only slightly from 
the mean distributions W(~o), which are plotted in Fig. 7. 
They show an increase in the overall mosaic spread up to 71' 
for an atomic ratio D/Nb ~ 0"6. 

Primary extinction - absorbing-hole mosaic model 

As discussed above, part of a defect-free mosaic block of 
thickness to does not contribute to an increase of crystal 
reflectivity if text < to, which is indicated by the dark region 
in Fig. 1. This causes an increase of extinction, called primary 
extinction, because the kinematical theory assumes that all 
atoms contribute equally well to the Bragg scattered inten- 



INTERNATIONAL UNION OF CRYSTALLOGRAPHY 239  

W 

2.200" 

2 000 

1.800 

1.600 

1.400 

1.200 

1.000 

800 

600 

400 

200 

0 

A(.dM = 3" 

I \ 

.w2  

\ 

\ ' , ,  
\ 

o 2 ~ , 5 ; 7 8 9 ; 
Crys|a l  Potalion angle in minutes of arc  
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sity. Neighbouring mosaic blocks are separated by an 
arrangement of dislocations which create a long-range dis- 
placement or strain field decreasing only with 1/r, where r 
represents the distance from the defect centre. Therefore per- 
fect blocks do not touch each other but are separated by a 
distorted region which cannot be treated with the dynamical 
theory for a defect-free crystal. Both aspects are summarized 
in Fig. 8 which represents what may be called an absorbing- 
hole mosaic model. 

The 'absorbing holes', which are due to primary extinction, 
represent a decrease of the effective crystal volume, which can 
be taken into account by using an effective sample thickness 
Tar_< To in the expression for the extinction coefficient: 

y = exp ( - gQ Teff/cOSOB). (16) 
Because T~rf = To-  (To-  T~ff) the extinction coefficient can be 
split in two parts: 

Y=YsYp, (17) 

where ys is the coefficient for secondary extinction defined 
above, and 

yp =exp [ - g Q ( T  o - Teff)/cos OB] (18) 

represents the coefficient for primary extinction. The dif- 
ference (To-T~ff) depends essentially on the mean block 
thickness t0 and on the extinction length text. In X-ray diffrac- 
tion the atomic scattering factor decreases rather rapidly 
with scattering angle and therefore the extinction length 
increases and the absorbing holes have the tendency to 
vanish for increasing scattering angles. The existence of 
absorbing holes may therefore be discussed in terms of an 
angular-dependent pseudo absorption. 

In general it will be very difficult to relate any diffraction 
theory to a model like that shown in Fig. 8 and even this 
model probably only represents a very crude approximation 
to the defect structure of 'real crystals' used in single-crystal 
diffraction experiments. Therefore it was decided to measure 
structure factors with 0.03 A `/-radiation (Maier-Leibnitz & 
Schneider, 1972); primary extinction will in general be 
negligible and secondary extinction will be rather small for 
samples of reasonable size. 

intensities for a ,/ rocking curve of a crystal with 1 ~ peak 
reflectivity is at least of the order of ten. 

Owing to the short wavelength, the Bragg angles are of the 
order of 1 ° and therefore only lattice tilts contribute to the 
width of a ), rocking curve, which makes the ?,-ray diffractom- 
eter complementary to backscattering instruments (Freund 
& Schneider, 1972). Furthermore, the scattering geometry 
becomes very simple. Crystals are studied in Laue geometry. 
In spite of the fact that the Ewald sphere is very large, possible 
effects of multiple Bragg scattering on the measured diffrac- 
tion pattern can be avoided (Schneider, 1975b). If the fine 
structure in the shape of the measured rocking curve is not 
smaller than the instrumental resolution of 10", no decon- 
volution problem exists and the rocking curve is directly 
proportional to the mosaic distribution function W(co), 
provided R,,. -~ eki  n (Schneider, 1974b). 

Absolute structure factors measured by means of 
0.03 .~ 7-radiation 

Because no monochromator is needed, the `/-ray beam in- 
cident on the sample is unpolarized and so the polarization 
factor is well known. The intensity distribution over the cross 
section of the primary `/-ray beam is homogeneous and stable 
in time. Each individual Bragg reflexion is measured on an 
absolute scale. Rather thick imperfect single crystals can be 
used, so that the crystal surface can be prepared carefully and 
the sample thickness is determined very precisely with a 
micrometer screw. Because for most atoms the `/-ray energy 
of 412 keV is much bigger than the binding energy of the 
electrons, anomalous dispersion does not occur. If the y-ray 
measurement is performed at very low temperature, structure 
factors, e.g. of transition metals, can be determined absolutely 
with an accuracy of the order of 0"5~o (Schneider, 1976). 

A series of rocking curves was measured by means of a 
7-ray diffractometer at the 220 reflexion of a copper single 
crystal 0.82 cm in thickness. The extinction length for the re- 
flexion is tex, = 92/~m and much larger than the expected size 
of perfect domains. Therefore primary extinction was assumed 
to be negligible in the interpretation of that diffraction experi- 

T-ray diffractometry 

The three ,/-ray diffractometers installed at the Institut Max 
yon Laue-Paul  Langevin in Grenoble were constructed for 
investigations of the mosaic structure of rather big single 
crystals by means of Bragg diffraction of the 412 keV ,/-radia- 
tion from radioactive gold (Schneider, 1974a). These crystals 
were intended for use as samples or monochromators in 
neutron scattering experiments. The principle of the experi- 
mental set up is shown in Fig. 9. No monochromator is 
needed to obtain a highly collimated monochromatic 7-ray 
beam (2=0-0302 .~, A2/3 ~ 10 -6 ,  angular divergence in the 
scattering plane Ac~gp'--10"), and the integrated reflecting 
power can be measured on an absolute scale. Because the 
absorption of the 412 keV ?,-radiation is small (the mean free 
path for example being about 11 mm for copper), measure- 
ments with targets contained in ovens, cryostats, or high- 
pressure devices can be easily performed. 

The total activity of the gold source is about 75 Ci. Its half- 
life is T1/z = 2.7 d, so in general the source is changed after 10 d. 
The maximum counting rate measured with the NaI(T1) 
scintillation counter for a beam cross section of 0.2 x 10 mm 
is of the order of 5000 c.p.s. The ratio of peak to background 

PH PT 
Fig. 8. 'Absorbing-hole mosaic model': The dark regions, which do 

not contribute to an increase in reflectivity of the mosaic blocks, 
are called 'absorbing holes' and are related to primary extinction. 
The shadowed area between the blocks represents the imperfect 
crystal region between mosaic blocks. 
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ment. If there is no deconvolution problem involved in the 
interpretation of the measured reflectivity distribution tin(co), 

PH(og) 
rm( fD)  = Po exp ( - ~toTo/cOs 0B) = rth((-'O) exp (#o To/COS 0B) 

and one obtains from formula (9) 

cos 0B 1 
W(o9) = 2-~-~oo In (1 _ 2-tin(co) ) . (19) 

Because j" W(co)dm = 1: 

cos 0 f ( 1 ) 
Q - 2---~o In 1 - 2rm(O9 ) de). (20) 

In terms of an o9 step scan the mosaic distribution function 
can be written as a function of r.,(og), where o9~ is the rocking 
angle running from wl to wN in steps of A~: 

W(wO 

_ in  1 - 2rm(co0  a c o  
v = l  

Furthermore one obtains a formula for the direct calculation 
of the structure factor FH from the measured reflectivity 
distribution rm(O9~): 

I V z sin 20B . cos 08 
IFnl = roZ~ro ( l + c o s  z 20n) 

( 1 ) -] 1/z 
x~=l ~ In 1-2r , , (o0j  Ao0j. (22)  

Fig. 10 shows a series of mosaic distribution functions 
deduced by means of formula (21) from the y rocking curves 
measured in different volume elements of the copper single 
crystal. Apparently the mosaic structure of the sample is very 
inhomogeneous. The peak reflectivity rma x varied between 8 
and 10%. For each volume element structure factors were 
calculated by means of formula (22). The atomic scattering 
factors obtained after correction for thermal motion are 
plotted in Fig. 10. The experimental values are significantly 
smaller than the Hartree-Fock free-atom value and oscillate 
around a theoretical value, which is the average of two dif- 
ferent values obtained from band calculations by Arlinghaus 
(1967) and Wakoh & Yamashita (1971). This theoretical value 
was also used to calculate the kinematical integrated re- 
flecting power Rkin for the estimation of the degree of extinc- 
tion (1 - y )  which occurs in the different volume elements and 
which is also shown in Fig. 11. The statistical error in the 
atomic scattering factors fm measured in different volume 
elements is about +0.25%. The average value over the first 
nine volume elements is f~=16.46+0.07 and the error is 
about +0"5%. The measurements performed in volume 
elements 10 and 11 are affected by more than 10% extinction 
and the corresponding fro values are too small in comparison 
with the whole series of measurements. Therefore it was 
assumed that extinction was significantly underestimated 
for these two measurements, which were excluded from all 
further considerations. 

Conclusions 

An important number of corrections necessary to deduce 
atomic scattering factors from X-ray intensities measured on 
imperfect single crystals do not need to be considered in the 
interpretation of diffraction patterns measured by y-ray 
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Fig. 11. Experimental atomic scattering factors f,, of the 220 reflexion 
of copper and the degree of extinction (1 -y)  as determined from 
v-ray rocking curves measured in different volume elements of the 
sample. 

diffractometry, which therefore opens new possibilities for 
the measurements of accurate structure factors in simple 
crystals with relatively small unit cells. Because the absorp- 
tion of the 412 keV y-radiation is small, measurements with 
the specimen in ovens, cryostats, or high-pressure devices 
can be easily performed. 

If extinction is less than 10%, the determination of struc- 
ture factors from rocking curves measured by y-ray diffrac- 
tometry is in general independent of the defect structure of 
the sample. Therefore accurate structure factors can be 
measured in crystals which undergo structural phase transi- 
tions as a function of pressure or temperature, which often 
are accompanied by changes in the defect structure of the 
samples. 

The author thanks Dr M. S. Lehmann for reading the 
manuscript and for valuable comments. 
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The various theoretical models of extinction are critically reviewed. It is shown that the Darwin energy transfer equations 
are valid as long as the mean coherence distance in the sample is smaller than the extinction length, as demonstrated 
recently by Kato. The available solution is correct when the entrance and exit surface do not overlap and the approxima- 
tion is seen to be reasonable for more complicated cases. The correlation between primary and secondary extinction is 
discussed. It is emphasized, in practical applications, that many tests, both theoretical and experimental (when possible) 
of the correctness of the correction should be made. Only samples that fit a given diffraction theory should be used for 
accurate studies like charge density determination. 

I. Introduction 

The problem of extinction is one of the major obstacles 
to the accuracy of coherent X-ray or neutron diffraction 
experiments. Various methods of correction have been pro- 
posed, both experimental and theoretical. Those methods 
have been all criticized in the literature and many crystallog- 
raphers may be believe that no serious progress has been 
made in this field. 

In the present article, a review is given of the basic physical 
assumptions used in the extinction theories. Several tests 
are described that tell whether an extinction correction can 
be applied to a given data set. The main purpose of this 
article is to give some confidence in the actual correction of 
extinction. 

There exist two theories of the diffraction of X-rays or 
neutrons: 

(a) The kinematical theory is based on the Born approx- 

* This paper was originally presented at the Tenth Congress of 
Crystallography, Amsterdam 1975, at an Open Commission Meeting 
sponsored jointly by the Commission on Crystallographic Appa- 
ratus and the Commission on Charge, Spin and Momentum Den- 
sities. 

imation which is supposed to be applicable to the whole 
sample under diffraction. It is therefore assumed that the 
interaction between radiation and matter is small enough 
for the incident beam not to be perturbed (except in a classical 
absorption process) within the sample. 

This theory is believed to be valid for the diffraction by 
gaseous molecules but the translational symmetry of a crystal 
does impose constraints on the structure of the waves that 
can travel inside the crystal. The kinematical theory is only 
valid in the limit of thin crystals. 

(b) The dynamical theory is the study of the waves that 
are compatible with the periodic nature of the crystal. It 
can be developed with 'quasi-geometrical' arguments, taking 
into account all the possible rescatterings of the incident and 
diffracted beams (Darwin, 1914; James, 1957; Warren, 1969). 
The problem can be formulated in a more general way, in 
terms of the electromagnetic theory (James, 1963; Batterman 
& Cole, 1964; Authier, 1970; Kato, 1974), in either the plane- 
wave or the spherical-wave approximation. A major dif- 
ficulty comes from the boundary conditions: no general 
solution has been found that is valid for every diffraction 
geometry. 

The dynamical theory leads to the kinematical theory in 
the limit of thin crystals. The frontier can be calculated from 
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