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The various theoretical models of extinction are critically reviewed. It is shown that the Darwin energy transfer equations 
are valid as long as the mean coherence distance in the sample is smaller than the extinction length, as demonstrated 
recently by Kato. The available solution is correct when the entrance and exit surface do not overlap and the approxima- 
tion is seen to be reasonable for more complicated cases. The correlation between primary and secondary extinction is 
discussed. It is emphasized, in practical applications, that many tests, both theoretical and experimental (when possible) 
of the correctness of the correction should be made. Only samples that fit a given diffraction theory should be used for 
accurate studies like charge density determination. 

I. Introduction 

The problem of extinction is one of the major obstacles 
to the accuracy of coherent X-ray or neutron diffraction 
experiments. Various methods of correction have been pro- 
posed, both experimental and theoretical. Those methods 
have been all criticized in the literature and many crystallog- 
raphers may be believe that no serious progress has been 
made in this field. 

In the present article, a review is given of the basic physical 
assumptions used in the extinction theories. Several tests 
are described that tell whether an extinction correction can 
be applied to a given data set. The main purpose of this 
article is to give some confidence in the actual correction of 
extinction. 

There exist two theories of the diffraction of X-rays or 
neutrons: 

(a) The kinematical theory is based on the Born approx- 

* This paper was originally presented at the Tenth Congress of 
Crystallography, Amsterdam 1975, at an Open Commission Meeting 
sponsored jointly by the Commission on Crystallographic Appa- 
ratus and the Commission on Charge, Spin and Momentum Den- 
sities. 

imation which is supposed to be applicable to the whole 
sample under diffraction. It is therefore assumed that the 
interaction between radiation and matter is small enough 
for the incident beam not to be perturbed (except in a classical 
absorption process) within the sample. 

This theory is believed to be valid for the diffraction by 
gaseous molecules but the translational symmetry of a crystal 
does impose constraints on the structure of the waves that 
can travel inside the crystal. The kinematical theory is only 
valid in the limit of thin crystals. 

(b) The dynamical theory is the study of the waves that 
are compatible with the periodic nature of the crystal. It 
can be developed with 'quasi-geometrical' arguments, taking 
into account all the possible rescatterings of the incident and 
diffracted beams (Darwin, 1914; James, 1957; Warren, 1969). 
The problem can be formulated in a more general way, in 
terms of the electromagnetic theory (James, 1963; Batterman 
& Cole, 1964; Authier, 1970; Kato, 1974), in either the plane- 
wave or the spherical-wave approximation. A major dif- 
ficulty comes from the boundary conditions: no general 
solution has been found that is valid for every diffraction 
geometry. 

The dynamical theory leads to the kinematical theory in 
the limit of thin crystals. The frontier can be calculated from 
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diffraction conditions and is called the 'extinction distance' 
A, which can be defined in slightly different ways but is of 
the order of: 

V 1 ). 1/2 
A - (1) 

(aC) IFltl2 Q sin 20 

V is the volume of the unit cell, FH the structure factor, 
2 the wavelength. In the X-ray case, a is the classical radius 
of the electron (eZ/mc 2) and C the polarization factor. In 
the neutron case, C is equal to 1 and a is equal to 10 -12 
cm. Q is the kinematical integrated reflectivity per unit 
length, 

= aC Ftl 2 23 

Q -V- sin 20 '  (2) 

t being the thickness of the perfect part of the crystal; 

if t,~ A the kinematical theory is valid; 
if ~> A the dynamical effects are very important. 

A represents a coherence length, the necessary distance for 
dynamical effects to occur. From (1) it is clear that A varies 
with the reciprocal point and is the smallest for strong re- 
flexions and large wavelengths (the cases where extinction 
effects are the most pronounced). 

H. Extinction models: the physical approximations 

Most experiments in diffractometry are done on crystals of 
small size and unknown defect structure. A direct investiga- 
tion of the defects can only be done in a few cases and leads 
to an average estimate, as for example the measurement of a 
dislocation density. 

How can the diffraction process be described in such cases? 
This is the fundamental question to be solved. Correspond- 
ingly, if we find a model that suits an experiment, how can we 
be sure that this model represents reality? Other models 
might fit the data equally well. In the present section, we 
shall try to answer the first question. 

1. Many developments of the dynamical theory have been 
proposed to characterize the effects of the various kinds of 
imperfections on the diffracted intensity (see for example the 
proceedings of the International Summer School on X-ray 
Dynamical Theory and Topography, Limoges, France, 1975). 
Topographic studies allow one to specify and localize the 
imperfections present in a given crystal. But, in order to be 
interpretable, they require the crystal to be large enough (at 
least a few mm) and the imperfections to be in small number. 
Therefore, at the present time, such experiments are not 
possible generally for samples that are used in X-ray dif- 
fractometry. Topographies may be obtained with neutron 
samples and they cannot be interpreted, because of the large 
number of imperfections (see § IV). The theoretical descrip- 
tion of scattering by imperfect crystals is extremely com- 
plicated and is only feasible in the case of very few defects. 

The most promising dynamical approach for our purpose 
is the theory of Taupin (1964) and Takagi (1962, 1969, 1975). 
The theory takes into account the local distortion of the 
lattice, u(r), the result of which is a spatial modulation of the 
amplitude of the waves in the crystal. Let k be the wave 
vector of the incident wave, Ko and Ka the wave vectors of the 
transmitted and diffracted waves, subject to the condition: 

K H = K o + H .  

The displacement vectors 9o  and ~ n  of the two waves are: 

9o  = -~0(r) exp [ - 2~i(Ko. r - vt)] 
~ a  = ~n(r) exp [ - 27ti(Ka. r - vt)]. (3) 

Let So and Sa be oblique coordinates of a point inside the 
crystal, respectively parallel to the incident and diffracted 
directions). ;~H is the Fourier component of the electric 
susceptibility of the ideal perfect crystal: 

- -  a / ] .  2 

xa = ~ f a .  (4) 

Takagi's equations can be written, for the components of a 
given polarization: 

0 
- -  g o  = - inkC~.n~n 
OSo 

OS----~ ~H = -- inK C Z n ~  o + 2ircK fl'n~n (5a) 

with 

f lU-  K n - K  1 c3 
g K ~S s [H. u(r)]. (5b) 

Kato (1973) has shown that the approximations made in 
deriving (5) are the following: 

- The Ewald sphere is replaced by its tangential plane 
near the point of interest. 

- The distortions are well behaved enough for the con- 
tribution from higher derivatives of H .  u(r) to be negligible. 

Balibar (1975) has shown that Takagi's theory is valid 
even for large distortions. In the limit of u(r)-0 ,  the equa- 
tions give the description of a perfect crystal. Equations (5) 
are valid for spherical as well as for plane incident waves. 

The practical limitations are the following: 
- at each point of the surface of the crystal, boundary 

conditions are to be applied both for the amplitudes and 
for the phases of the waves. The phase condition is generally 
troublesome. 

The quantity {O[H.u(r)]/0Sa} should be known and a 
solution can only be found for very simple forms of this 
factor (like a constant strain gradient). 

Nevertheless, one may hope to find a solution of Takagi's 
equations if the distortions can be described statistically, 
which implies the introduction of a model. 

2. The next step concerns the definition of a reasonable 
statistical model. The major difficulty comes from the lack 
of direct experimental information about the distribution of 
the distortions in a small crystal (some information is now 
obtained from y-ray diffraction, but for large crystals; 
Schneider, 1974, 1975). We shall discuss in § IV some indirect 
verifications of the statistical assumptions. 

For a statistical model to be realistic, many distortions 
must exist. Each distortion results in a local lack of periodi- 
city. One may think of the crystal in terms of an aggregate of 
small perfect domains that are slightly misoriented one to 
the other. The boundary regions generally have a small 
volume and are highly distorted. They can be assumed to 
contribute to a diffuse scattering and their contribution is 
often neglected. The phase relation between the waves dif- 
fracted by two adjacent domains is supposed to be random 
and this results in an incoherent process. Such a model, 
first introduced by Darwin (1914) and later developed by 
many authors (see for example: Zachariasen, 1945), is called 
the 'mosaic model'. The size of the perfect domains, t, may 
fluctuate around an average value g and must verify the con- 
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dition: t,~A. In that case, the diffraction inside a given 
domain follows the kinematical theory. 

The counters integrate the diffracted intensities around 
the exact Bragg position, along two directions: perpendicular 
to the plane of diffraction and perpendicular to the ideal 
diffracted direction, in the plane of diffraction. 

In a plane-wave description, the process is only dependent 
on the divergence e of the incident beam (proportional to 
the departure from Bragg's law) (see for example Becker & 
Coppens, 1974a). 

One may therefore define for any perfect region the dif- 
fracted power per unit volume and intensity: at(e), which 
depends on the position in the crystal. If there are many per- 
fect blocks, one can also define the probability in a given 
area of the crystal for a block to be misoriented by an angle 
A from the ideal orientation: W,(A). The effective unit dif- 
fracting power will therefore be: 

fir(e) = ar x IV , .  (6) 

This function will represent the scattering process in the 
mosaic crystal. Without a direct experimental knowledge 
of the defect structure, a large arbitrariness is associated 
with this coupling function f,(e). Fortunately, the measured 
quantities are integrated intensities which are less dependent 
on the explicit form of the function fr(e). 

Most theories assume the spatial dependence of fr(e) to 
be negligible: this is equivalent to the assumption of ho- 
mogeneous mosaic structure. Such an assumption is not 
obvious (Schneider, 1974, 1975) and the effect ofinhomogene- 
ities will be discussed in another paper (Becker, 1977). 

If the perfect domains are small enough for absorption 
to be represented by 

exp ( -/~t) --~ 1 - # t ,  (7) 

the energy exchange process inside the crystal can be 
formulated as: 

0Io 
- (f +#)Io + f i n  

c~So 

0In 
- ( f + # ) l n + f l o  • (8) 

~3Sn 

Io(e) and In(e) are the incident and diffracted intensities 
corresponding to a given divergence angle e. Boundary con- 
ditions have to be applied in the following way. Let to and 
tn be the depths parallel to the incident and diffracted direc- 
tions, and J o  be the intensity of the external incident beam: 

I o = J o  for t o = 0  
l n = 0  for t n = 0 .  (9) 

Zachariasen (1945) has shown that if (7) is not satisfied, 
equations (8) are not valid, the diffraction process being 
limited to a thin layer below the entrance surface. 

If un is the unit vector along the diffracted beam, the 
integrated power ~ is given by the following expression 
(Becker & Coppens, 1974a): 

~ =  de IH(e,M)u. ds ,  (10) 
- s  exit  s u r f a c e  

where ds is the surface element, normal to the exit surface. 
The extinction correction y is defined as the ratio of the 
integrated power ~ to its kinematical limit ~k. 

~k = J o v Q  

(v is the volume of the crystal). Therefore: 

y=Jo'v-'Q-lfdef In(e,M)uds. (11) 
exit s u r f a c e  

The extinction correction that can be obtained by solving 
equations (8-11) is called secondary extinction and is 
denoted by Ys. 

3. So far we have neglected the dynamical effects inside 
each perfect region, which is only justified if i,~A. The 
model can be extended to less strict conditions (namely: 
~<A) in the following way. One still assumes incoherence 
of the diffraction by different domains but takes into account 
the attenuation due to dynamical effects in each domain, by 
an average factor Ye, called primary extinction. YP is calcu- 
lated for the diffraction by a mean block. Equations (8) have 
therefore to be replaced by 

Olo 
= - (fyp + la)lo + fypIn  

OSo 

OIn 
- ( f y p + / O I n + f y p I o  • (12) 

aSn 

In the case of inhomogeneous mosaic structure, ye should 
be a function of the position. If absorption is severe and 
primary extinction to be considered, the approximation (7) 
may not be satisfied. Therefore the absorption process 
should be analysed inside each perfect region in a dynamical 
way, leading to the anomalous absorption effect. Zachariasen 
(1968) has tried to generalize the equations of the diffraction 
to include anomalous absorption. Becker & Bonnet (1977) 
have shown that this approach is physically unrealistic and 
have proposed another formulation, discussed for the practi- 
cal case of yttrium iron garnet [a preliminary study has been 
extensively discussed by Bonnet, Delapalme, Fuess & 
Thomas (1975)]. It should be kept in mind that no precise 
description of anomalous absorption and primary extinc- 
tion can be obtained by the present model. The formulation 
has to be reconsidered from dynamical equations in the case 
of severe primary extinction (i > A). 

4. The calculation of Ye should be done from Takagi's 
equations (5), the solution of which is very difficult, partic- 
ularly because of the phase boundary conditions. Since only 
first-order approximations are significant within the present 
theory, some authors (Zachariasen, 1967; Becker & Coppens, 
1974a, b) have thought that a rough theory of primary extinc- 
tion should be sufficient. They still use energy transfer 
equations inside the average block (a sphere for isotropic 
extinction): 

alo Oln 
- - - a ( I o - I n ) .  (13) 

OSo OSn 

Becker & Coppens (1974a) verified that the solution is 
resonable to the first order for a sphere. But equations (13) 
are physically unreasonable and for severe extinction, it is 
impossible to describe primary extinction (Becker & Cop- 
pens, 1975). Becker (1977) shows that solutions from Takagi's 
equations (in the case of perfect crystals) can be obtained 
for many shapes of crystals if i < A. 

5. The separation between primary and secondary extinc- 
tion is artificial and a proper theory should not partition 
the crystal into incoherent domains. 

Kato (1975, 1976) has proposed a first dynamical ap- 
proach to the problem, starting from Takagi's equations (5) 
for a distorted crystal. He performs the calculation in the 
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case of a spherical incident wave. It can be shown (Kato, 
1974) that there is a Fourier transform relationship between 
plane-wave and a spherical-wave solutions. 

To calculate the wave amplitude, Kato considers all pos- 
sible routes from the incidence point to the point under 
study. The displacement vector has the form: 

~ n = E  A R exp ( iPR)  , (14) 
R 

where the summation involves all the possible routes. The 
phase term PR involves the values of H .u(r3 at the various 
diffraction centres associated with the chosen route. The 
intensity In is therefore: 

I n = Z  Z ARA'g, exp i(PR--PR,). (15) 
R R '  

It is impossible to go further unless a hypothesis is made 
concerning the distribution of the distortions. The assump- 
tion is that of a homogeneous and isotropic distribution. 
It is possible to replace In by the ensemble average of it over 
the possible distortions. 

( I a ) = Z  ~ ARA*g, (exp [i(PR--PR,)). (16) 
R R '  

The term (exp [i(PR--PRO]) involves the correlation of the 
defects. Kato has been able to show that, if z is the average 
correlation length, and in the hypothesis where (-c ~ A), ( Iu)  
and the corresponding incident intensity ( Io )  satisfy the 
following equations: 

O(Io) 
OS------~ - (2"rRe(gaga) + #)(I0)  + 2zlZn[Z(Iu) 

O(Iu) 
OSu (2zRe(7.nZn)+#)(Ia)+2z[7.a[2(lo). (17) 

Equations (17) are very similar to (8), but the coupling 
terms are independent of any divergence angle (the spherical 
waves take all incident directions into account). It can be 
shown that {2Z[Zn] 2} is the diffracting power per unit in- 
tensity and unit length, in the kinematical approximation, of 
a crystal of dimension z. It is therefore equivalent to 8(e) 
in plane-wave theory. The small difference that can exist 
between Re(znXn) and [~(H] 2 may be related to Borrmann 
absorption (Becker, 1977). It can be shown also that if 
6(e) is replaced by a constant, equations (8) and (17) lead to 
the same formal expression for the extinction correction. 
The calculation of z for some distortion models (block size 
and angular distortion effects) involves parameters which 
are similar to those involved in mosaic theory and gives 
them a more physical meaning. The difference between the 
two theories may be explained as follows (Becker, 1977). 
Kato's theory describes the plane-wave intensity as the trans- 
form of the ensemble average of the spherical-wave solution. 
This average is taken over all possible distributions of the 
distortions. In fact, the ensemble average, for an incident 
plane wave, is to be taken over the plane-wave intensity, 
which particularizes the correlations in directions perpen- 
dicular to the incident beam. Therefore, the two solutions 
are different and the correlation length z has to be modulated 
by a function of e. The two theories are equivalent. 

"Nevertheless, Kato's approach is fundamental for various 
reasons. First, the intensity coupling is not an a priori as- 
sumption as in mosaic theory. The method of solution can 
certainly be extended to the case where (z>A). It gives a 
better meaning to the parameters introduced in mosaic 

theory, which has more validity than could be predicted 
from its original assumptions, if(e) becomes a statistical 
coupling function involving a correlation length without 
assuming a discontinuous aggregate of small crystallites. 

Much progress has still to be made but the agreement 
of the two theories based on very different hypotheses 
should give some confidence in the validity of present extinc- 
tion corrections. 

III. The solution of the energy transport equations 

The solution of equations (8) [or (17)] has been studied by 
several authors. Hamilton (1957, 1963) proposed a numerical 
integration, introducing grid points and replacing the dif- 
ferential equations by difference equations. Werner and 
coworkers (Werner & Arrott, 1965; Werner, Arrott, King & 
Kendrick, 1966; Werner, 1974) followed by Zigan (1970, 
1976), applied the general method of solution of hyperbolic 
equations and obtained the intensities for specific geometries. 
Unfortunately, these authors did not find a practical solu- 
tion, usable in a least-squares program. Zachariasen (1967) 
made an important contribution in finding a general ap- 
proximation that was routinely programmed (Larson, 1969) 
and extended to anisotropic extinction cases (Coppens & 
Hamilton, 1970). The success of the method was very satis- 
factory but in the meantime shortcomings of Zachariasen's 
theory were pointed out (Cooper & Rouse, 1970), mainly 
due to an improper angular dependence of the expression 
for y. Becker & Coppens (1974a, b, 1975) reconsidered com- 
pletely the problem and were able to obtain a general ap- 
proximate solution that is exact for small Bragg angles and 
only a third-order approximation for large Bragg angles (for 
which extinction is generally small). It has been shown 
recently (Bonnet, Delapalme, Becker & Fuess, 1976) that the 
solution is exact in all Laue geometries and Becker (1977) 
proposes some ways to obtain a better solution in other 
cases. The solution has been extended to anisotropic extinc- 
tion and applied by the authors to various cases; a very 
significant improvement was observed compared with pre- 
vious treatments. We shall confine ourselves to the outline 
of the results. 

(1) The solution for secondary extinction is 

Ys = Q - ~ 

¢(~)---,-~A-lfdv 
xexp { - ( 8  +p)(To + T'H)}Io{2a(ToT'H) 1/2} 

A = v  - i f  d v e x p { - # ( T o + T n ) } "  
v 

(18) 

I0 is a zero-order modified Bessel function. To and Tn are 
the optical path lengths along the incident and diffracted 
directions. Similar expressions can be obtained for primary 
extinction, the volume of integration being that of a mean 
perfect block, ~ being replaced by a, and p assumed to be 
zero. Ys and yp depend on the orientation matrix, the Bragg 
angle, the intensity of the reflexion, the absorption coeffi- 
cient (for Ys only) and the shape of the crystal. Two im- 
portant parameters are 

xs =~(0)T 
Xp = ~o-(0)~, (19) 
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where i is the mean path length associated with a perfect 
domain, and T is given by 

f (To+ T~) exp {-/~(To + TH)}dv 

T -  ~ (20) 

f exp {-p(To + Tn)}dv 
v 

The extinction correction, solution of equations (12), is 

Y = Ye(xe)ys { xsye(xe)}. (21) 

In the X-ray case, the two polarization states must be con- 
sidered. The integral (18) was calculated numerically for a 
spherical crystal, for which y~ is only a function of x~ and 0. 
An analytical fit was proposed (obviously, a better one 
might be found), assuming either a Gaussian or a Lorentzian 
coupling function 8. a(e) can be calculated exactly for any 
block shape. 

If (/~T) is larger than 0.5, a p dependence is introduced 
in the expression for Ys. Becker & Coppens (1975) have 
shown that if T is calculated exactly by (20) for each reflexion, 
the 'spherical approximation' can be used for many shapes 
of crystals (unless the ratio of the dimensions of the crystal 
is too large, > 2). Concerning the cases of anisotropic extinc- 
tion, Thornley & Nelmes (1974) have proposed a formulation 
slightly different from that of Coppens & Hamilton (1970), 
which gives better results and is physically more justified. 

(2) If a Gaussian distribution ~ is assumed, one gets: 

_ _ sin 20 { ( t  sin 20"~z~-1/2 (22) 
a6(0)=t-----~- 1 + \ ~ / / j  

where 

We(e) = [/2g exp ( - 2ngZe 2) 

and if 6 is Lorentzian" 

~ {  2~ 32gSin 20"( -1 ~,.(0)= t 1 + ~ (23) 

where 

WL(~)= 2g{ 1 + 4nZ~2g2} -1 

Extreme cases correspond to: 
- Type II (extinction dominated by the block-size effect) 

if the breadth of a is large compared to the breadth of W: 

sin 20 sin 20 
2 <~ g 6(0) = ~ ~ (24) 

- Type I (extinction dominated by the misorientations) 

_ sin 20 
t 2 <~g ff(0),-~ ] /2g .  (25) 

Becker & Coppens have shown that if extinction is severe, 
it should be of type I except for very small Bragg angles for 
which (25) cannot be satisfied and the extinction is of mixed 
type. Type I extinction is associated with large values of 
and therefore some primary extinction may be present in 
such cases. 

Type II extinction is mathematically identical to primary 
extinction alone (type I and g very small). If one assumes type 
II extinction, 

Xs=~Q~ ~ T. (26a) 

If one assumes primary extinction, 

Xp=~QF sin 20 
2 (26b) 

In quasi-spherical crystals, where T is constant, these two 
possibilities cannot be distinguished. Such a case has been 
found in the X-ray data collected by Killean, Lawrence & 
Sharma (1972) on a sphere of LiF. These authors assumed 
secondary extinction and got t-~3 x 10 -6 cm, one hundred 
times smaller than the expected value obtained from disloca- 
tion density measurements (3 x 10 -4 cm). The assumption 
of primary extinction led to ~-.-3 x 10 -4 cm. 

At very small Bragg angles, extinction cannot be of pure 
type I (equations 22 and 23), and particle size effects become 
important. 

At the present time, only Gaussian or Lorentzian shapes 
have been assumed for 6(~). In fact, ff(~) comes from several 
experimental effects, which are generally reasonably re- 
presented by Gaussian functions, and from intrinsic dif- 
fraction effects, which are generally Lorentzian. Therefore a 
better representation should be a Voigt profile (Armstrong, 
1967). The results will be analysed in a subsequent publica- 
tion. 

The distinction between type I and type II is very clear 
in the present formalism (equations 24 and 25), due to the 
factor sin 20. 

I V .  A p p l i c a b i l i t y  o f  t h e  m o d e l s  

The present theory has been programmed (Program 
LINEX 74) and applied to several data sets (Becker & 
Coppens, 1974b, 1975; Bonnet, Delapalme, Fuess & Thomas, 
1975; Bonnet, Delapalme, Becker & Fuess, 1976; Jost, 
Rees & Yelon, 1975; Niimura, Tomiyashi, Takahashi & 
Harada, 1975; Harvey & Prager, 1975; K6tzler, Scheithe, 
Knorr  & Yelon, 1976). We want here to discuss various 
possible tests concerning the validity of the application of 
an extinction correction to a given sample. 

In neutron diffraction, where extinction is generally very 
pronounced, one is only interested in getting unbiased po- 
sitional and thermal parameters (except when magnetic 
scattering is present), while in X-ray diffraction it is im- 
portant to get accurate individual structure factors in order 
to calculate reliable electron densities. 

1. The distinction between type-I and typc-II dominated 
extinction is very clear on the basis of conventional R values. 
If extinction is severe, it is generally type-I dominated, with 
a preference for a Lorentzian distribution (for a given width 
of the reflexion, a Lorentzian allows for more pronounced 
angular distortions than a Gaussian). 

Block size effects may become important for small Bragg 
angles (equations 22, 23). In the case of type-I predominance, 
primary extinction may be significant and may even be the 
major source of extinction (primary extinction correction 
is mathematically equivalent to secondary type II). 

2. The collection of data on different samples is highly 
recommended. The various data sets should give refined 
parameters and structure factors that are in good agreement 
(Bonnet, Delapalme, Becker & Fuess, 1976) and should 
enable one to select the sample that is the most adequate 
for the chosen extinction correction. 

3. It is of great interest to vary the wavelength. It is obvious 
from the theory that Xs and xe vary approximately as 22 
(for small Bragg angles). Many examples show that the re- 
fined thermal parameters are in excellent agreement for the 
various data sets and a joint refinement on all data may re- 
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duce the standard deviations. (Positional parameters do not 
in general depend significantly on the type of extinction 
correction that is assumed). 

However, we do not think that an exact agreement be- 
tween the refined extinction parameters should be expected. 
r and g necessarily have some 2 dependence, for the following 
reason. When 2 increases, the extinction length decreases. 
The model is based on the form of the coupling function 
8(el). This function is an average diffracting power, which 
is a statistical compromise between the block size and the 
angular effects and the optimized values of r and g may vary 
with 2. There is experimental evidence that they slightly in- 
crease with 2, which may correspond to some undercorrec- 
tion for long wavelengths. The significance of r and g is 
only statistical and the statistical description of the diffrac- 
tion behaviour of a crystal is expected to depend on the 
specifications of the radiation that is used. Niimura et  al. 
(1975), by a time-of-flight neutron experiment on CuCI, have 
shown that the proposed correction is adequate in the wave- 
length range, 0.5-5 .~, the largest discrepancies occurring 
for short wavelengths. It should be added that if the sample 
is well suited for an extinction correction, the refined scale 
factors for the various wavelengths must be in very close 
agreement, which has been verified on various examples 
(Becker, 1973). 

4. In order to check for the decorrelation of extinction 
from other experimental effects, several refinements are re- 
commended with thresholds that momentarily exclude the 
most severely extinction-affected reflexions (Becker & Cop- 
pens, 1975). The stability of the thermal parameters is very 
significant information. It is also instructive to define 
'partial R values' that are restricted to reflexions of small y. 
The conventional R values are not a sufficient test and cases 
are found where two different corrections lead to very dif- 
ferent thermal parameters and the same R values (Becker & 
Coppens, 1975). 

5. The effective block size (t*), derived from equations (22) 
and (23) must be compared with A. In most neutron experi- 
ments, the situation is quite satisfactory: t* < A (Bonnet et  al., 
1976), except for few reflexions for which t* ~ A. In the X-ray 
case, structure factors may be higher than in the neutron 
diffraction experiment, but the perfect domains are often of 
smaller size and generally few reflexions are affected. As 
pointed out by Kato (1976), the model may be reasonably 
applicable in the case where t*.--A, and accumulation of 
results will allow in the future the delimination of the prac- 
tical domain of applicability of the theory. The major short- 
coming seems to come from cases where primary extinction 
is important. 

6. In neutron experiments, the crystal is often large enough 
for a topographic study to be possible. Such an experiment 
is informative about the homogeneties of extinction and the 
validity of a statistical description of the defects. Similarly, 
dislocation density measurements give an estimate of the 
order of magnitude of the coherence length in a crystal. 

7. ),-ray diffraction (Schneider, 1974, 1975) allows for the 
investigation of rocking curves. It has been extensively used 
by Schneider and coworkers on large samples and gives 
valuable information about the optical image of the defect 
structure and the inhomogeneity of extinction. In the present 
form, the resolution of the experiment is limited by the size 
of the slit: 10×0-2 mm. Therefore only 'long-range' in- 
homogeneities are revealed. 

Recent studies on small samples (suitable for neutron dif- 
fraction) have been made (Bonnet et  al., 1976; KStzler et  al., 

1976). The experimental curve is a convolution of the rocking 
curve with the resolution function of the instrument (the 
width of which is of the order of 10"). It has been possible to 
deconvolute and estimate the width of the rocking curve. In 
the cases that were studied, a good agreement was observed 
with the extinction parameters obtained by refinement. The 
repetition of the experiment for various reflexions and with 
the orientation of the crystal changed gives valuable informa- 
tion about the anisotropy and 'short-range inhomogeneity' 
of extinction. 

The experimental tests discussed in 6 and 7 are highly 
recommended for testing the application of any given dif- 
fraction theory to a particular sample. 

8. Polarized neutron diffraction is a powerful technique 
for studying extinction in magnetic materials (Bonnet et al., 
1976), since it is scale-factor free. When applied to yttrium 
iron garnet, on various samples and with different wave- 
lengths, it revealed the data to be fairly consistent after the 
correction had been applied and the Lorentzian distribution 
to be favoured. The technique is very sensitive to the type of 
correction that is used and also to the type of statistical distri- 
bution that is assumed. 

9. A trivial test concerning the accuracy of an experiment 
is the calculation of the agreement index between symmetry- 
equivalent reflexions and the averaging of symmetry- 
equivalent reflexions before any refinement. This procedure 
may be dangerous. Most of the time, when systematic dis- 
crepancies occur among symmetry-equivalent reflexions ex- 
tinction is assumed to be anisotropic. In fact Xs is pro- 
portional to T, which differs for related reflexions unless the 
crystal is spherical. Therefore in any case where extinction 
is present and the crystal is not a sphere, the averaging of 
reflexions may lead to biased structure factors. This pro- 
cedure may also give a pessimistic experimental agreement 
(we call this agreement index ~). One generally assumes the 
variance of the observation to be given by: 

2 0"2 ( I )= tyc  + 0 ( 2 I  2, 

2 where I is the measured intensity and ac accounts for the 
2 is proportional counting statistics. For strong reflexions, ac 

to I and often 
0"2(I) "~ 0~2I 2 . 

Therefore the standard deviation is artificially increased by 
the averaging procedure, as is the noise in an electron density 
calculation. 

On the other hand, the comparison of the structure factors 
of equivalent reflexions, after individual corrections, may be 
very informative about the applicability of the correction. 

10. In powder diffraction experiments, extinction may be 
present and owing to the small value of T for individual 
particles, primary extinction is to be expected. Price (1975) 
has shown that extinction in diamond is of primary type. 
The use of the Becker & Coppens formulation (xe being 
proportional to ~ sin 20/2 instead of ~ in Zachariasen's 
treatment) changes the Debye-Waller factor significantly and 
leads to a value in close agreement with the lattice-dynamical 
value. 

V. Conclusion 

Until now the application of extinction theories has been 
quite successful and its range of applicability, concerning 
secondary extinction, seems to be quite wide. 

The preceding discussion shows that many checks exist, 
some of them being experimental. Because of the size of the 
crystals, experimental checks can only be applied to the 
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neutron case and X-ray data should be analysed with special 
care. 

The recent theory of Kato puts the conventional extinc- 
tion theories developed by Becker & Coppens on a physical 
basis and specifies the conditions of application. 

Because of the statistical nature of the problem, it is dif- 
ficult to get close agreement between a 'refined parameter' 
and its estimate from some experiment. 

Some people claim that extinction can be accounted for 
only if y < 0.90. This is certainly not true. The suitability of a 
given sample for an extinction theory depends essentially on 
the local description of its defect structure and not at all on 
the size of the crystal. If extinction is mainly primary, the 
correction may be unreliable for y.--0.8-0.9. But if t*~A, 
the range of applicability can be very large. We think that 
the tests discussed in § IV are very important for under- 
standing the nature of the sample but they do not prevent one 
from using a correction. 

Much effort should be made in the near future to extend 
the theory to cases where t* >A and to get accurate solu- 
tions to the diffraction equations associated with a model. 

Even with the present limitations we believe that it is 
possible to obtain experimental electron densities accurate 

3 to within 0.01 e ,~- . Only very sophisticated quantum- 
mechanical calculations are able to reproduce equivalent 
features (Becker, 1975). 
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