netic properties and excitations of the electron gas. To bring one to the 1976 frontiers of research in all these topics in so short a space necessarily means that only the most hardy will survive, but the book is written in such a way that those bright students who get bored with the pedestrian and often superficial accounts of these subjects in the best-selling textbooks may well find their match with this one if they can afford its price – nearly 2% of a British student’s grant.

The book does not have the maturity of style exhibited by the best of the 'grand masters' in that one is seldom persuaded of a difficult point by philosophical and pedagogical expertise; rather one is presented with a concept, fact or equation with practical rather than pedagogical comments and then led rapidly on. The grammar, too, is casual in places and among the unfortunate mis-spellings (which cannot all be printing errors) are Lamor, Leonard-Jones for Larmor, Voight for Voigt, Shoenflies for Schönflies, Friedel for Friedel and Koopman’s for Koopmans’. The indexes are incomplete, especially the author index which seems to be limited to those whose papers were actually quoted to the exclusion of those whose papers are so famous they are seldom quoted, e.g. Bravais, Miller and Voigt. More polish and accuracy would have made this book a classic in the field and perhaps the last attempt to describe the whole of solid-state physics in one manageable volume.

Crystallographic and chemical readers of Acta Crystallographica will find this book only of passing interest – it really is 'physics for physicists' though the inorganic chemist developing new materials may well find it a useful summary of modern calculational techniques. I would hope that libraries could afford a copy each: probably only a more adventurous pricing policy on the part of the publishers would give it any chance of capturing the student market. Certainly it will be a good book to look out for when 'remaindered'.

L. L. Boyle

University Chemical Laboratory
Canterbury
Kent CT2 7NH
England


Книга является монографической обработкой способа расшифровки функции Патерсона из известной пространственной группы структуры кристалла — метода ромбов пиков. Применением правила линейных и плоскостных концентраций, разработанных в известной книге М. Бюргера Структура кристаллов и векторное пространство, были выведены теоретические а priori диаграммы векторных систем пространственных групп низших и средних сингоний. Эти диаграммы даны в книге графическим способом в форме таблиц, приведенных в приложении. Изображение каждой диаграммы содержит чертеж пространственной группы с обозначением одного межатомного вектора в общей положении и чертеж соответствующей векторной системы в патерсоновской группе в смысле метода ромбов пиков. К каждой диаграмме приложен символ пространственной группы и символ соответствующей патерсоновской группы в скобках. Этот богатый материал рисунков вместе с инструкцией для его практического использования, придают книге и характер практического курса. Метод ромбов пиков позволяет осуществлять уточнение симметрии структуры кристалла и локализацию структурных фрагментов. Анализ функции Патерсона с помощью этого метода в книге демонстрирован на примерах структур соединений K2Cr2O7, KNiPO4 и Na2Ct2O7.

Логическое строение и объём глав даёт хорошее введение для широкого круга структурщиков. Книга предназначена для научных сотрудников, аспирантов и студентов, специализирующихся в рентгеноструктурном анализе.

Ф. Валах

Словацкий политехнический институт
Братислава
Чехословакия


La Société Chimique de Londres fait paraître des rapports périodiques spécialisés: le volume 5 de la série sur les propriétés des solides liés aux surfaces et aux défauts, publié sous la direction de M. W. Roberts et de J. M. Thomas, comprend huit chapitres de longueurs et d’esprits différents.

La structure électronique superficielle est présentée en 15 pages par S. J. Gurman et M. J. Kelly. Ce premier chapitre qui fait le lien entre la physique de l’état solide et le modèle chimique des liaisons, confronte les résultats théoriques et expérimentaux sur les états électroniques superficiels, en particulier dans le cas de la surface {111} du silicium; un paragraphe est ensuite consacré à la modification des états volumiques par la présence d’une surface.

Le chapitre 2, Structures de disclination dans la mésophase carbonée et le graphite, par J. L. White et J. E. Zimmer montre et interprète en 20 pages des structures de disclinations observées avec le microscope photonique et le microscope électronique à balayage; il étend ainsi aux cokes et au graphite le domaine d’application des disclinations présentées dans le volume 3 de la même série.


Dans le chapitre 4, Interaction des électrons rapides avec les cristaux organiques dans le microscope électronique: difficultés associées à l’étude des défauts. W. Jones monte