core); this, however, can easily be enlarged. By means of a subroutine, indexes and moduli are computed and stored in the core for all reciprocal- and direct-lattice vectors which are contained within the spheres of radii h_0 and l_0, respectively, and are not related by a centre of symmetry. Ewald series (3) is calculated by another subroutine for all interatomic vectors x_{ij} which are not symmetry-related, using the relation $I^2 + 2l + 3m = \sum p l_p (\sum q G_{pq} x_q)$, where the G_{pq}'s are metric tensor elements. The output of the program shows: the total electrostatic lattice energy of a mole, E, and its two components E_1 and E_2, the coefficients (9) and (10) and the coefficients referring to the independent ionic species. As an example, running the program on K$_2$SO$_4$ in the optimal convergence conditions required 5.5 s of execution time on an IBM 370/158 computer.

APPENDIX II

The triple integral in (12) was calculated in spherical coordinates assuming $\theta = 0$ for the direction of vector x. In the first step, the substitution $t = A\sqrt{(l^2 + 2xl \cos \theta + x^2)}$ was used:

$$
\int_0^\infty \frac{\text{erfc}[A\sqrt{(l^2 + 2xl \cos \theta + x^2)}]}{\sqrt{(l^2 + 2xl \cos \theta + x^2)}} \sin \theta d\theta
= \frac{(l+x) \text{erfc}[A(l+x)] - (l-x) \text{erfc}[A(l-x)]}{xl} \exp[-A^2(l+x)^2] - \exp[-A^2(l-x)^2] \sqrt{(\pi)Axl};
$$

Comparisons of Atomic Thermal Motions for Graphite at 300 K Based on X-ray, Neutron, and Phonon-Spectrum Data

BY R. CHEN* AND P. TRUCANO

Crystallography Department, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA

(Received 31 January 1978; accepted 26 June 1978)

The mean-square amplitudes of vibration in graphite based on an X-ray charge-density analysis are 0.0032 (2) and 0.0031 (6) Å2 parallel to and perpendicular to the basal plane, respectively. Values for the parallel vibrations of 0.0031 (6) and 0.0032 Å2 were derived from temperature-dependent neutron measurements and a calculated phonon spectrum. The neutron measurements and the phonon spectrum both predict lower values [0.0090 (20) and 0.0098 Å2] for the out-of-plane vibrations. This small discrepancy may be caused by small changes in the core atomic scattering factors from the free-atom values or by a deficiency in the phonon-spectrum model.

* Present address: Department of Physics, National Taiwan Normal University, Taipei, Taiwan 107, Republic of China.
Introduction

Charge-density analysis, which uses least-squares-refinement techniques to describe nonspherical charge distributions, has the potential for yielding accurate thermal parameters from X-ray diffraction data. When free-atom scattering factors are used with conventional refinement techniques, the thermal parameters tend to compensate for the deficiencies in the assumed atomic charge distributions. To test the ability of charge-density-analysis techniques to separate thermal-smearing effects from the nonspherical charge distributions, the thermal parameters from a recent X-ray diffraction study on graphite (Chen, Trucano & Stewart, 1977) were analyzed. These thermal parameters were then compared with other values obtained from a temperature-dependent neutron diffraction study (Ludsteck, 1972) and from a phonon spectrum which was calculated using specific-heat data (Young & Koppel, 1965). These comparisons establish better estimates of the graphite thermal parameters and indicate the extent to which basic assumptions of the charge-density analysis are met.

Review of relevant results

(a) X-ray data

The graphite data of Chen, Trucano & Stewart (1977), which extended to sin θ/λ = 1.2 Å⁻¹, were obtained from small, natural single crystals. Neutron diffraction data on another crystal from the same source gave thermal parameters which were consistent with the X-ray results but which had higher estimated errors (Trucano & Chen, 1975). The X-ray thermal parameters had low estimated standard deviations. The common problem of high correlations between thermal parameters, scale, monopole populations, and/or radial function parameters was not encountered due in large part to the highly anisotropic nature of the graphite thermal motion.

In the harmonic approximation there are two independent parameters needed to describe the motion of each of the two C atoms in the asymmetric unit. One parameter (U_{11}) describes the mean-square amplitude of vibration in a direction parallel to the basal plane, and the other (U_{33}) describes the mean-square amplitude in a direction perpendicular to the basal plane. Table I contains these values which were determined by a charge-density analysis containing monopole through hexadecapole deformations, a common radial function for both independent C atoms, and anisotropic extinction parameters (Chen, Trucano & Stewart, 1977).

The effects of X-ray extinction can be compensated for by the thermal parameters. The fact that there was no significant change in the thermal parameters derived with and without extinction corrections (see Table I) indicates that the effects of thermal motion and extinction were properly accounted for.

All previous measurements of the thermal motion in graphite were made with the assumption that both C atoms in the asymmetric unit vibrate with the same mean-square amplitude. The result of Chen, Trucano & Stewart (1977) is a direct experimental confirmation that this assumption is justified.

Although the calculation of Debye temperatures to describe thermal motion in anisotropic crystals is not a rigorous procedure, theoretical and experimental results are often expressed in this form. Therefore, the Debye temperatures for isotropic motion with a mean-square amplitude equal to U_{11} and U_{33} are also given in Table 1. These Debye temperatures were obtained by solving the following equation for Θ (James, 1965):

$$8\pi^2 U_{ii} = (6h^2 T/mk^2) \Phi(\Theta/T) + \Theta/4T$$

where h, m, and k are Planck’s constant, the atomic mass, and the Boltzmann constant respectively. T is the absolute temperature and

$$\Phi(x) = x^{-1} \int_0^x \xi(\exp \xi - 1)^{-1} d\xi.$$
(b) Neutron data

The most recent experimental determination of graphite thermal parameters, other than the X-ray study referred to above, is based on temperature-dependent neutron diffraction intensities from the 002 and 110 reflections of polycrystalline samples (Ludsteck, 1972). Data collected between 300 and 1150 K were analyzed by Ludsteck to give the Debye temperatures listed in Table 1, and the associated mean-square amplitudes were obtained from equation (1). The agreement between the X-ray and neutron determinations is good, especially for the in-plane vibrations. The X-ray U_{33} value is two standard deviations below the neutron value, a discrepancy which may or may not be considered significant.

(c) Lattice-dynamical results

Several models of the graphite vibrational spectrum have been constructed. The most relevant to the data discussed here is an extension of the theory developed by Yoshimori & Kitano (1956) to fit specific-heat data in the range 100–1000 K (Young & Koppel, 1965). Young & Koppel derived a phonon spectrum which has two parts: one describes vibrations in the basal plane and the other describes vibrations perpendicular to the basal plane. These frequency distributions can be used to derive mean-square displacements comparable to those measured in diffraction experiments using the relationship (Blackman, 1955)

$$8\pi^2 U_{ii} = \frac{(2h/m) \int v^{-1} F(v) \left[\frac{1}{2} + \exp \left(\frac{X - 1}{v} \right) \right] dv}{\int F(v) \, dv},$$

where $X = hv/kT$. The results are listed in Table 1.*

Note that the agreement for the three different determinations of U_{11} or Θ_{11} is extremely good. The lattice-dynamical result leads to a value of U_{33}, which is low compared with the X-ray value and in agreement with the neutron value. Estimates of errors in the values derived from the phonon spectrum are difficult to make. It should be kept in mind that the phonon spectra were calculated by fitting specific-heat data. Therefore the higher frequencies are given a relatively greater weight than they would receive if the mean-square amplitudes were being matched. This is because the integration giving the specific heat contains a factor of v^2 instead of the v^{-1} found in the integration for U_{ii}. The Young & Koppel spectrum gives much higher specific-heat Debye temperatures, a situation similar to that found in Si and Ge (Batterman & Chipman, 1962).

Discussion

The relatively low value for the out-of-plane motion derived from the X-ray measurements prompts a close look at the assumptions that enter into charge-density analysis. There were indications of extinction in the graphite data, especially in the 00l reflections which are important in the determination of U_{33}. However, U_{33} did not change appreciably when the extinction corrections were applied, and if the corrected intensities were still affected by extinction one would expect the low-order reflections to have smaller intensities leading to a smaller value of U_{33}, not a higher one. Similar arguments may be made concerning the contribution of thermal diffuse scattering to the observed X-ray intensities. No correction was made but TDS should be larger for higher-order reflections tending again to reduce the value of U_{33}.

The charge-density analysis was carried out with the assumption that all of the charge associated with each atom moves with that nucleus. This is probably not true for the charge that is far from the nuclear centers. However, this charge does not scatter appreciably except at low scattering angles. The charge, which is localized close to the nuclei and which does closely follow the nuclei, scatters over the whole range of scattering angles. Because the scattering at higher angles is the dominant factor in determining the thermal parameters, it is unlikely that this assumption will affect the derived numbers.

Stewart (1973) showed that the thermal parameters are very sensitive to the assumed model for the core charge density. Chen, Trucano & Stewart (1977) assumed a $1s^2$ core for the C atoms and used Clementi (1965) atomic orbitals. Stewart's (1973) analysis of the thermal motion of C atoms in diamond showed that these wave functions for the core led to high estimates of the thermal parameters compared to the lattice-dynamical calculation. The graphite comparison shows a small discrepancy in the same direction and supports Stewart's conclusion that Hartree–Fock core scattering factors are insufficient to describe the C atom's core density.

To summarize the results of this comparison of several determinations of thermal parameters in graphite: (1) there is gratifying agreement among the values based on X-ray charge-density analysis, neutron temperature-dependent measurements, and the results inferred from a calculated phonon spectrum; (2) charge-density analysis can separate the effects of
thermal smearing from those of nonspherical charge distribution even when the X-ray data contain effects due to extinction; (3) there is a small discrepancy between the X-ray results and the parameters calculated from the phonon spectra. This discrepancy may indicate that the C atom cores may not be adequately described by Hartree–Fock core scattering factors or that the model used to derive the graphite phonon spectrum is deficient.

References

Deux Nouvelles Structures Polytypiques dans le Système Titane–Soufre: 16H et 18H

PAR J. J. LEGENDE & M. HUBER

Laboratoire de Chimie Appliquée de l’Etat Solide, ENSCP, 11 rue Pierre et Marie Curie, 75231 Paris CEDEX 05, France

(Reçu le 14 mars 1978, accepté 26 mai 1978)

The structures of two recently discovered polytypes of titanium sulphide have been determined. The structure of 18H, mainly built on a stacking sequence similar to that of 8H (3212), confirms the formation mechanism formerly suggested for TiS.7 hexagonal polytypes. In the same way, the stacking sequence of 16H provides some evidence of a 4H → 12H transformation producing rhombohedral polytypes. The experimental data supporting these conclusions are presented in this paper.

Introduction

Un mécanisme de formation expliquant l’existence des structures polytypiques observées dans TiS.7 a été récemment proposé (Legendre, Moret, Tronc & Huber, 1975b; Legendre & Huber, 1977). Comme dans le cas de ZnS (Alexander, Kalman, Mardix & Steinberger, 1970) c’est l’interaction de fautes d’empilement avec les dislocations vis présentes dans les cristaux qui entraîne l’apparition de ces structures. Ces dernières sont constituées par un empilement compact d’atomes de soufre dont les sites octaédriques sont occupés par les atomes métalliques. Une couche de titane est alternativement pleine ou partiellement remplie afin de respecter la stoechiométrie du composé.

La séquence d’empilement des couches de soufre est caractéristique d’un polytype et impose (à une translation près) la position des couches métalliques. La connaissance des structures d’un nombre croissant de polytypes de sulfure de titane revêt une importance particulière dans la mesure où chacun de ces renseigne-ments expérimentaux sert de test à la validité du mécanisme qui a été proposé.

Ainsi, comme on pourra le constater dans la suite de cet article, la connaissance des structures 16H et 18H apporte une confirmation supplémentaire à ce mode de formation. De plus, l’étude structurale détaillée du cristal dans lequel est situé 16H nous a permis d’envisager l’existence d’une transformation de phase qui serait la cause fondamentale de l’apparition des polytypes rhomboédriques.

Structure 18H

Cette structure dont l’existence a été déjà rapportée (Legendre & Huber, 1977) a été observée dans deux cristaux à symétrie hexagonale allongés selon e et dont la structure de base est 2H. Ils sont issus d’une ampoule de préparation chauffée pendant deux mois à la température de 920°C. La composition du mélange initial était TiS.7. L’étude structurale systématique d’un