For optics researchers this book is a most valuable review of the 'state of the art' and will be rapidly recognized as such. I would warmly commend it, however, to any crystallographer – young or old – who is interested in looking behind the routine techniques that can all too easily be accepted without question. It will set up new trains of thought and stimulate closer analysis of the potential and limitations of some of our methods that could be very rewarding.

Department of Physics
University College
Cardiff CF1 1XL
Wales


Electron density mapping in molecules and crystals.

This double issue of the Israel Journal of Chemistry (Vol. 16, Nos. 2 and 3) reports the lectures given at the Bat-Sheva Seminar on Electron Density Mapping in April 1977. Though 14 authors have been involved in the 19 chapters and 2 appendices, the care of the authors and editor has resulted in a coherent publication which will be invaluable to anyone interested in precision studies of electron density.

In alphabetical order the authors are I. Absar, P. Coppens, Y. M. Engel, D. Feil, A. T. Hagler, N. K. Hansen, F. L. Hirshfeld, K. Kurki-Suonio, P. F. Price, B. Rees, V. H. Smith, E. D. Stevens, R. F. Stewart and S. Vega. Their names are sufficient to indicate that this is an authoritative publication.

The topics covered include: basic concepts of quantum chemistry for electron density studies; diffraction physics; total X-ray scattering; symmetry and its implications; density functions and many-centred finite multipole expansions; charge deformation models; vibrational averaging; systems for study; experimental problems; modified least-squares formalisms and Fourier methods; assessment of accuracy; representations of the electron density and its topographical features (this chapter contains some beautiful and instructive diagrams); spatial partitioning of charge density; conformational properties; NQR in solids. The results for specific molecules and crystals are illustrative rather than comprehensive, and the strength of the volume lies in its descriptions of methods. The volume is complementary to the posthumous work by Barrie Dawson: Studies of Atomic Charge Density by X-ray and Neutron Diffraction – A Perspective (Advances in Structure Research by Diffraction Methods. Vol. 6, Pergamon, 1975). Dawson goes more deeply into a more restricted set of topics. The present volume is well presented and should be on the shelves of all crystallographic libraries.

Department of Chemistry
UMIST
Manchester M60 1QD
England


Books Received


