War I there was no opportunity to continue research work. Instead WHB was contributing efficiently to the fight against submarines; he invented new acoustic hydrophone detectors and laid the foundations of the ASDIC (‘Anti-Submarine Division-ics’) techniques, initiated by Langevin in France.

When peacetime returned, WHB was named President of the Royal Institution and brought it back from the decline in which he found it to its present fame: ‘RI has produced more fundamental breakthroughs per square foot than any other establishment in the world’.* Eight Nobel laureates have been professors there. With the years, the crystallographer WHB became a ‘national figure representing science’. President of the Royal Society from 1935, he had firm views on all aspects of science and education and when World War II came he expressed his views in strong words: ‘the authoritarian state tends to decision without enquiry; the democracy tends to enquiry without decision’ and Winston Churchill accepted his idea of the SAC (Science Advisory Committee to the government during wartime).

The book fairly reflects the quasi-religious sense of responsibility of WHB proven throughout his whole life. ‘He is a great man of science and he is also a very great man.’†

The only criticism addressed by this reviewer to the lucidly written and well documented book on WHB, which G. M. Caroe dedicated to the memory of her brother WLB, is that while the reader is quite happy to see pictures of WHB, of his wife and also of WLB, there are no pictures of the author’s other brother, Robert Charles, killed during World War I at Gallipoli (1915) . . . or herself. But this might be the reaction of a French temperament.

E. F. BERTAUT

* Sir George Porter, present director.
† Rutherford in a discussion with the anatomist Arthur Keith about who should become President of the Royal Institution.

Solid-state science is an enormously broad field, which seems to be growing continuously both in width and depth. Despite the fairly large number of books published in recent years, not least about its theoretical side, there is definitely room for more presentations of the subject, particularly if the perspective is a little unusual.

That is one characteristic of this book by Madelung, which is a revised and partly rewritten translation of three pocket books published in 1972 and 1973 in German. Its strength is the concentration on essential concepts and their relationships. Since, on the other hand, the author’s intention was not to write an encyclopedia, a number of topics ordinarily found in other solid-state books had to be left out.

The basic chapters on the one-electron approximation and on elementary excitations fill more than a third of the book. The concept of the quasi-particle is central to the development. In the next four chapters interactions between various kinds of quasi-particles are discussed with reference to those properties of solids which they ‘explain’: electron–phonon interaction and electrical conductivity, electron–electron interaction and superconductivity, electron–phonon and phonon–phonon interactions and optical properties, and, finally, phonon–phonon interaction and thermal properties.

Part of a chapter is devoted to a field which, strangely enough, receives very little attention in most text-books on solid-state physics, namely, chemical bonding and cohesion in solids. Here there is definitely more than the mere classification into ionic, covalent, metallic and molecular solids. In particular, the discussion on the conceptual difficulties one encounters in this connection is very welcome. On the other hand, it is a bit disappointing to see that the author seems to be completely unaware of the con-
siderable amount of work done in the last twenty years on
the theory of chemical bonding in molecules, both quanti-
tatively and qualitatively. Solid-state and molecular physi-
cists definitely have a lot to learn from each other.

The last two chapters deal with localized states associated
with point defects and surfaces, and disordered materials.

A number of the many topics left out of the presentation
are mentioned and the reader is referred to a fairly complete
bibliography. Ten pages of problems are provided, without
answers. For some of the more advanced problems
references to books or journal articles are given.

Madelung's stimulating introduction to solid-state theory
is definitely recommended both to newcomers in the field and
to those who perhaps are well acquainted with parts of the
field but who would like to know more about other sides and
to connect that with what they know already.

Jean-Louis Calais

Quantum Chemistry Group
University of Uppsala
Box 518
S-751 20 Uppsala 1
Sweden

Solid Surface Physics. Springer Tracts in Modern
Physics. Vol. 85. Edited by G. Hohler, with con-
btributions by J. Holzl, F. K. Schulte and H.
$37.40.

Volume 85 of this series on solid-state physics consists of
two substantial surveys. The first (by J. Holzl and F. K.
Schulte) is devoted to the modern state of studies of the
electron work function (WF) of metals, which is an
important parameter of the electron structure of metallic
surfaces. In the second (by H. Wagner) a number of physical
and chemical properties of the real surface are described on
the basis of the stepped-surface model.

Review 1. Rapid progress, both theoretical and experi-
mental, has taken place in WF studies during the past
thirty years as a consequence of new experimental surface
methods, ultra-high vacuum techniques and industrial
interest (especially in catalysis and electronics).

This survey differs from previous ones in the breadth of
its contents and by its concentration of interest on the most
recent advances. The theoretical problems are considered in
chapter 2, after a brief introduction (chapter 1). The density
function formalism, in which electrons are viewed as an inter-
acting gas in the field causing by the ion cores, is used for
calculations of the WF. Also the self-consistent wave-
mechanical model and some other methods of WF cal-
culations are described.

WF values are tabulated and compared with some new
experimental data. The agreement is close in most cases,
though sometimes serious deviations occur (Li, Au). The
changes of the WF that are caused by adsorbates on the
surface of pure metals and alloys are discussed in detail, but
the problems of polycrystalline metal surfaces and of the
thermodynamics of electron emission are not considered.

The third chapter is devoted to experimental procedures.
Methods of WF measurement are divided into two groups:
absolute methods (thermionic emission, photoemission, field
emission) and relative ones (diode methods, condenser
methods). The peculiarities of the various types of measure-
ment are discussed very carefully.

Experimental results of WF measurements from pure
metals with clean surfaces, together with a brief summary of
various theoretical models, are given in chapter 4, and an
analytical comparison is carried out. Moreover, variations of
the WF with temperature, and the mechanical stress
dependence of the WF are considered, and data connected
with phase transitions are discussed. WF values are
tabulated for nearly all metals.

The fifth chapter is devoted to the WF variations caused
by adsorption on clean metals. WF data are used to
determine parameters of the adsorbates. Results are given for
a large number of adsorbate systems.

WF measurements in binary alloys are described in
chapter 6. Some useful recommendations on preparative pro-
cedures are given. WF data as a function of certain alloy
parameters are discussed and, as an example, WF measure-
ments are used to obtain a thin alloy film diffusion coefficient
and its temperature dependence.

On the whole, this fundamental work, containing more
than 500 references, will be useful for specialists in the
physics and chemistry of solids, thin films and adjacent
fields.

Review 2. This review is devoted to studies of periodic
stepped surfaces. The crystallographic description of regular
steps and experimental facts confirming the reality of steps
are given in chapters 1 and 2. Electron microscopy and,
especially, low-energy electron diffraction techniques are
discussed as the most effective methods for the study of
stepped surfaces.

Properties of the clean stepped surface are presented in
chapter 3. The thermal stability of steps and the transitions
between stepped and 'hill and valley' structures are con-
sidered on the basis of the model of temperature-dependent
small free-energy differences of both states. Also in this
chapter, theoretical calculations and measurements of the
WF are given for stepped surfaces. The WF and surface
state density are shown to depend upon the step character,
and for semiconductors new steps occur in some cases.

The interaction of stepped surfaces with foreign atoms or
molecules is discussed in the fourth chapter. The main
attention is paid to adsorption kinetics and reaction
processes, owing to their technological importance in hetero-
geneous catalysis, epitaxy, and corrosion. The concept of
'active sites' in heterogeneous catalysis is considered to set
up the connection between catalytic properties and special
surface states. The steps and the kinks are high coordination
places, and they can be especially active during 'structure
active' reactions. Though most of the experimental facts are
only qualitatively interpreted the differences in physical
properties and kinetic processes related to a given low index
plane and the corresponding stepped surface are distinctly
shown.

To understand the physical reasons responsible for the
many phenomena associated with steps, it is necessary to
have additional experimental facts and more systematic