The diffuse spot around \((h,0,0)\) and \((0,k,0)\) will of course be similar; the coefficients of \(l_1\) and \(l_2\) in (12) acquire the same form as that of the coefficient of \(l_3\) on appropriate transformation of axes.

In order to observe these diffuse spots, single crystals of cubic ZnS doped with, say, Se must be grown. Se is expected to replace S and form distortion centres of \(T_d\) symmetry. The difficulties in these experiments are the faintness of the diffuse scattering due to low strength of the substitutional distortion centres, and the presence of thermal diffuse scattering. However, by working at low temperatures, it may be possible to observe the anisotropic effect in the reciprocal plane (normal to \(H\)) through some strong axial reflexion.

References

Macromolecular Structure Refinement by Restrained Least-Squares and Interactive Graphics as Applied to Sickling Deer Type III Hemoglobin

Department of Chemistry, University of South Carolina, Columbia, SC 29208, USA

(Received 27 February 1979; accepted 25 July 1979)

Abstract

A restrained least-squares (RLS) computer program and two interactive graphics (IG) systems have been used in combination to refine the structure of deer type III hemoglobin. By alternating applications of RLS with examinations and corrections of the atomic model superposed on electron density maps (IG), the residual has been reduced from \(\sim 0.42\) to \(\sim 0.25\) and the sites of dubious fit between model and map reduced to \(\sim 6\%\) of the residues or \(\sim 3\%\) of the atoms. It was possible to fit routinely \(\sim 4600\) atoms to X-ray intensity data sets ranging from less than \(6000\) (\(9.0-4.0\) Å resolution) to \(\sim 21500\) points (\(6.0-1.98\) Å resolution) employing RLS, which uses interatomic distances to retain structural integrity. Convergence was rapid and many shifts greater than 1 Å were recorded. An in-house graphics display allowed the placement of atoms not in the original atomic model and GRIP, a fast-response interactive graphics system, was used to correct any gross conformational misfit of the atomic model to the electron density maps. The man hours needed to run both GRIP and RLS is less than previously reported real-space methods. The strategy of how RLS and IG can be best applied and how the molecular structure changed during refinement are discussed.

Introduction

A key factor in an X-ray protein structural refinement is the improvement in the interpretability of the electron density maps so that structural features are more readily perceived. The use of high-resolution X-ray data to improve the atomic coordinates of a macromolecule whose basic structure is ‘solved’ at low resolution has followed diverse paths (Blundell & Johnson, 1976). Until recently, the refinement methods reported were: real-space fitting by visual fit in a Richards Box (Richards, 1968) or its present equivalent, the electronic optical comparator (Collins, Cotton, Hazen, Meyer & Morimoto, 1975); automated real-space fitting (e.g. Diamond, 1966, 1974; Huber, Kukla, Bode, Schwager, Bartels, Deisenhofer & Steigemann, 1974; Freer, Alden, Carter & Kraut, 1975; Ladner, Heidner & Perutz, 1977; Moews & Kretsinger, 1975);
conventional reciprocal-space fitting (Watenpaugh, Sieker, Herriott & Jensen, 1973); and energy minimization procedures (Levitt, 1974; Levitt & Lifson, 1969; Rasse, Warme & Scheraga, 1974; Hermans & McQueen, 1974; Hingerty, Brown & Jack, 1978). In the past, real-space refinement has been the chosen method because energy minimization techniques have failed to fit the X-ray data to the same precision and conventional reciprocal-space refinements had far greater computing requirements than the real-space methods. Two recent developments have made a reciprocal-space refinement viable and have substantially reduced the number of man hours needed to implement a refinement: (1) a restrained least-squares (RLS) procedure which uses known structural parameters as observational equations to supplement the X-ray data (Konnert, 1976; Schmidt, Girling & Amma, 1977; Hendrickson & Konnert, 1979; Anderson, Stenkamp & Steitz, 1978; Sussman, Holbrook, Warrant, Church & Kim, 1978; Sussman, Holbrook, Church & Kim, 1977); (2) the availability of high-resolution* interactive graphics systems (IG) for rapid examination of electron density maps (GRIP, 1975) and, if necessary, for modification of refined atomic positions to conform to these maps. RLS was chosen here because it biases the solution towards chemically reasonable geometry, it converges rapidly without high-resolution data, and it can be implemented easily by those familiar with conventional least-squares procedures. RLS differs from conventional least-squares refinement by: (1) using molecular geometry as if it were observational data, (2) solving the normal equations using the conjugate-gradient method, and (3) saving only selected elements of the derivative matrix, thereby reducing computer memory requirements to 1% of that required by conventional full-matrix least squares. This report analyzes the results of applying a combination of RLS and IG to refine an initial model of sickling deer type III hemoglobin [Hb(DIII)] obtained by a molecular-replacement solution (Schmidt, Girling, Houston, Sproul, Amma & Huisman, 1977) from an initial R of ~0.42 (4372 atoms/5589 reflections) to a final R of ~0.25 (4556 atoms/21 469 reflections). The RLS procedure has not previously been applied to a molecule of this size (Konnert, 1976; Anderson, Stenkamp & Steitz, 1978) nor to a molecular replacement solution unrefined by other methods (Sussman et al., 1978; Anderson, Stenkamp & Steitz, 1978). The degree of "hands off" RLS refinement is determined and the supplemental value of IG to the RLS is shown. The combination of these techniques may have wide applicability and other workers may profit from our experience in terms of the power, limitations and most effective usage in macromolecular problems. (For a detailed report, see Girling, Schmidt, Houston & Amma, 1978.)

Experimental and refinement parameters

The source, purification, crystallization conditions, unit-cell data and details of the structure solution of deer hemoglobin β-chain type III [Hb(DIII)] can be found in Schmidt, Girling, Houston, Sproul, Amma & Huisman (1977).

In RLS, molecular geometry is incorporated as observed data so that the sums of differences between the n observed and calculated structure amplitudes (F_o, F_c) and between the m 'ideal' geometric terms, d_o, (Hendrickson, 1977) and the corresponding terms (d_i) in the observed structure are minimized. The equations to be minimized take the form:

$$\zeta = \sum_{i=1}^{n} W_i (|F_o| - |F_c|)^2 + \sum_{i=1}^{m} W_j (d_{o,i} - d_{i,i})^2, \quad (1)$$

where W_j is the weight given the idealization of the jth geometric real-space term (types 1–4, below) and W_i is the weight of the ith X-ray intensity. The specific geometric terms (restrictions) as applied to Hb(DIII) fall into four types (see Table 1 in Girling, Schmidt, Houston & Amma, 1978, for more details). Excluding hydrogen atoms, there was a restriction for: type 1, every covalently bonded atom pair (1,2 distance); type 2, every bond angle (1,3 distance); type 3, each peptide link specifying the alpha carbon to carbonyl oxygen [Ca...O] (1,4 distance); type 4, the planarity of the peptide link, the planarity of the appropriate part of the side chains in the phenylalanine, tryptophan, arginine, asparagine, aspartic acid, tyrosine, glutamine, glutamic acid and histidine residues and the planarity of the four

* Greater than 4 display points per mm.
† $R = \frac{\sum |F_o - |F_c||}{\sum |F_o|}$.

Fig. 1. The residual, $\sum |F_o| - |F_c|/\sum |F_o|$, of various shells of intensity data (solvent not included). The additional scale in Å is $d = \lambda/2 \sin \theta$.

|$\sin \theta/\lambda$| R
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>0.5</td>
</tr>
<tr>
<td>0.20</td>
<td>0.4</td>
</tr>
<tr>
<td>0.25</td>
<td>0.3</td>
</tr>
<tr>
<td>0.30</td>
<td>0.2</td>
</tr>
<tr>
<td>1.0A</td>
<td>0.1</td>
</tr>
<tr>
<td>5.0A</td>
<td>0.0</td>
</tr>
<tr>
<td>10A</td>
<td>0.0</td>
</tr>
</tbody>
</table>
Table 1. Summary of the parameters associated with the refinement of Hb(DIII)

Table:|
<table>
<thead>
<tr>
<th>Step Refinement no.</th>
<th>Type</th>
<th>Substep (n)</th>
<th>NAT</th>
<th>RT</th>
<th>NPT</th>
<th>RES</th>
<th>(W_t)</th>
<th>(R_t)</th>
<th>(R_{est})</th>
<th>(\langle \Delta \phi_n \rangle)</th>
<th>(\langle S_n \rangle)</th>
<th>(\langle S_{r} \rangle)</th>
<th>(D_b)</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cycled</td>
<td>CYCLE 1</td>
<td>4372</td>
<td>11804</td>
<td>5589</td>
<td>4-0-9-0</td>
<td>1/169</td>
<td>0.419</td>
<td>0.404</td>
<td>17</td>
<td>0.24</td>
<td>0.24</td>
<td>0.041</td>
<td>2.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CYCLE 2</td>
<td>4110</td>
<td>11265</td>
<td>5589</td>
<td>4-0-9-0</td>
<td>1/169</td>
<td>0.387</td>
<td>0.362</td>
<td>11</td>
<td>0.19</td>
<td>0.19</td>
<td>0.079</td>
<td>2.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CYCLE 3</td>
<td>4110</td>
<td>11265</td>
<td>5589</td>
<td>4-0-9-0</td>
<td>1/121</td>
<td>0.357</td>
<td>0.350</td>
<td>10</td>
<td>0.18</td>
<td>0.18</td>
<td>0.106</td>
<td>2.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CYCLE 4</td>
<td>4110</td>
<td>11265</td>
<td>5589</td>
<td>4-0-9-0</td>
<td>1/100</td>
<td>0.337</td>
<td>0.342</td>
<td>5</td>
<td>0.08</td>
<td>0.45</td>
<td>0.105</td>
<td>2.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CYCLE 5</td>
<td>4110</td>
<td>11265</td>
<td>9524</td>
<td>3-0-5-0</td>
<td>1/81</td>
<td>0.400</td>
<td>0.380</td>
<td>5</td>
<td>0.21</td>
<td>0.51</td>
<td>0.091</td>
<td>4.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CYCLE 6</td>
<td>4110</td>
<td>11265</td>
<td>9524</td>
<td>3-0-5-0</td>
<td>1/72</td>
<td>0.358</td>
<td>0.356</td>
<td>5</td>
<td>0.15</td>
<td>0.56</td>
<td>0.062</td>
<td>4.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CYCLE 7</td>
<td>4110</td>
<td>11265</td>
<td>9524</td>
<td>3-0-5-0</td>
<td>1/58</td>
<td>0.336</td>
<td>0.342</td>
<td>4</td>
<td>0.13</td>
<td>0.61</td>
<td>0.045</td>
<td>4.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CYCLE 8</td>
<td>4110</td>
<td>11265</td>
<td>11647</td>
<td>2-8-5-0</td>
<td>1/49</td>
<td>0.321</td>
<td>0.320</td>
<td>4</td>
<td>0.13</td>
<td>0.68</td>
<td>0.053</td>
<td>5.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CYCLE 9</td>
<td>4110</td>
<td>11265</td>
<td>11647</td>
<td>2-8-5-0</td>
<td>1/27</td>
<td>0.306</td>
<td>0.307</td>
<td>4</td>
<td>0.12</td>
<td>0.72</td>
<td>0.039</td>
<td>5.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CYCLE 10</td>
<td>4110</td>
<td>11265</td>
<td>13934</td>
<td>2-6-5-0</td>
<td>1/21</td>
<td>0.306</td>
<td>0.292</td>
<td>4</td>
<td>0.10</td>
<td>0.73</td>
<td>0.042</td>
<td>6.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CYCLE 11</td>
<td>4110</td>
<td>11265</td>
<td>13934</td>
<td>2-6-5-0</td>
<td>1/17</td>
<td>0.290</td>
<td>0.290</td>
<td>3</td>
<td>0.10</td>
<td>0.77</td>
<td>0.036</td>
<td>6.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CYCLE 12</td>
<td>4110</td>
<td>11265</td>
<td>13934</td>
<td>2-6-5-0</td>
<td>1/17</td>
<td>0.290</td>
<td>0.290</td>
<td>3</td>
<td>0.10</td>
<td>0.77</td>
<td>0.036</td>
<td>6.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CYCLE 13</td>
<td>4110</td>
<td>11265</td>
<td>13934</td>
<td>2-6-5-0</td>
<td>1/14</td>
<td>0.275</td>
<td>0.265</td>
<td>3</td>
<td>0.09</td>
<td>0.79</td>
<td>0.028</td>
<td>6.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CYCLE 14</td>
<td>4110</td>
<td>11265</td>
<td>13934</td>
<td>2-6-5-0</td>
<td>1/14</td>
<td>0.265</td>
<td>0.255</td>
<td>2</td>
<td>0.07</td>
<td>0.81</td>
<td>0.037</td>
<td>6.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CYCLE 15</td>
<td>4110</td>
<td>11265</td>
<td>13934</td>
<td>2-6-5-0</td>
<td>1/14</td>
<td>0.265</td>
<td>0.255</td>
<td>2</td>
<td>0.07</td>
<td>0.81</td>
<td>0.037</td>
<td>6.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CYCLE 16</td>
<td>4110</td>
<td>11265</td>
<td>13930</td>
<td>2-0-5-0</td>
<td>1/25</td>
<td>0.289</td>
<td>0.288</td>
<td>3</td>
<td>0.11</td>
<td>0.81</td>
<td>0.040</td>
<td>8.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CYCLE 17</td>
<td>4525</td>
<td>11265</td>
<td>5589</td>
<td>3-3-6-0</td>
<td>1/17</td>
<td>0.340</td>
<td>0.290</td>
<td>15</td>
<td>0.26</td>
<td>0.26</td>
<td>0.430</td>
<td>4.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CYCLE 18</td>
<td>4525</td>
<td>12314</td>
<td>8419</td>
<td>3-3-6-0</td>
<td>1/17</td>
<td>0.378</td>
<td>0.327</td>
<td>15</td>
<td>0.27</td>
<td>0.27</td>
<td>0.430</td>
<td>4.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CYCLE 19</td>
<td>4525</td>
<td>12314</td>
<td>8419</td>
<td>3-3-6-0</td>
<td>1/16</td>
<td>0.254</td>
<td>0.248</td>
<td>9</td>
<td>0.17</td>
<td>0.30</td>
<td>0.270</td>
<td>4.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CYCLE 20</td>
<td>4525</td>
<td>12314</td>
<td>21469</td>
<td>2-0-6-0</td>
<td>1/16</td>
<td>0.310</td>
<td>0.280</td>
<td>3</td>
<td>0.17</td>
<td>0.36</td>
<td>0.136</td>
<td>10.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CYCLE 21</td>
<td>4525</td>
<td>12380</td>
<td>21469</td>
<td>2-0-6-0</td>
<td>1/12</td>
<td>0.286</td>
<td>0.263</td>
<td>6</td>
<td>0.12</td>
<td>0.40</td>
<td>0.055</td>
<td>10.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CYCLE 22</td>
<td>4525</td>
<td>12380</td>
<td>21469</td>
<td>2-0-6-0</td>
<td>1/12</td>
<td>0.287</td>
<td>0.273</td>
<td>5</td>
<td>0.12</td>
<td>0.39</td>
<td>0.046</td>
<td>10.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CYCLE 23</td>
<td>4525</td>
<td>12380</td>
<td>21469</td>
<td>2-0-6-0</td>
<td>1/12</td>
<td>0.287</td>
<td>0.273</td>
<td>5</td>
<td>0.12</td>
<td>0.39</td>
<td>0.046</td>
<td>10.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CYCLE 24</td>
<td>4525</td>
<td>12380</td>
<td>21469</td>
<td>2-0-6-0</td>
<td>1/9</td>
<td>0.275</td>
<td>0.256</td>
<td>3</td>
<td>0.11</td>
<td>0.42</td>
<td>0.040</td>
<td>10.5</td>
</tr>
</tbody>
</table>

* Estimated value.

pyrrole rings and the two carboxyl groups of each heme group. In the heme group, the iron atoms were considered bound to the four nitrogen atoms of the porphyrin resulting in four bonding (type 1) and eight non-bonding Fe—N—C (type 2) constraints.

Each reflection was assigned the same weight, \(W_t\), but it is more correct to use weights determined by counting statistics or scattering angle (Fig. 1). Under the above conditions all atoms may move nearly independently if \(W_t \gg W_i\) but their movements are increasingly restrained as \(W_i\) decreases for a given set of \(W_t\)'s. Konnert (1976) suggests that the ratio of \(W_t\) to \(W_i\) be set by approximating \((d_t^2 - d_i^2)\) with \(2d_t\Delta d\) and then equating the two right-hand terms of (1). In this way, \(W_i\) and \(W_t\) can be related to the variances of \(F\) and \(d\) factors routinely estimated in X-ray structure determinations.*

The second part of the refinement (IG) utilized the PDP-11/40 with a VT11 graphics processor and a 0-43 m display or the GRIP system (1975) to inspect visually and to adjust the hemoglobin model structure after RLS 'convergence'. Atoms not in the model were located by estimating coordinates from the PDP-11 stereo display of the model superposed on an electron density map (step 2, Table 1). The PDP-11 display system was inadequate for major changes in the backbone, such as when more than two or three residues

* The \(W_t/W_i\) ratio will differ in more recent versions of the program. See footnote to equation (1).
had to be shifted, and subsequent IG examinations (steps 4, 6, Table 1) and molecular manipulations utilized the GRIP system, where up to ten residues could be displayed and fitted to the electron density map.

For the first two inspections (steps 2, 4) eight modified* electron density maps were examined. Such modified electron density map was used in order to remove bias from the part of the map being examined. The final inspection was made with maps using \(|F_c| - |F_o| \) and \(|F_o| \) in which \(F_c \) were calculated from the model. One direction was contoured with the former coefficients and the other two with the latter set in order that changes in three-dimensional atomic positioning would fit our interpretation of both maps.† Only positive density at one level in each map was displayed so that incorrectly positioned atoms would not be within the contours. This procedure tends to eliminate fitting false details in difference maps. Contour levels varied between 0-2 and 3-0 e/A³.

Results and discussion‡

The refinement plan envisioned cycles of RLS until the residual indicated convergence, followed by an IG inspection of the refined atomic coordinates superimposed on electron density maps (phased by the refined coordinates) to assess the validity of and, if necessary, to change atomic positioning or to include additional atoms in RLS. If the IG changes were substantial, a repetition of RLS followed by visual inspection was carried out until the correlation between the refined atomic positions and the electron density was satisfactory. The results of the plan can be conveniently divided into six steps (Table 1): (1) 16 cycles (substeps) of RLS with starting atomic coordinates from the molecular-replacement solution (Schmidt, Girling, Houston, Sproul, Amma & Huisman, 1977); (2) locating additional atoms by means of IG; (3) five cycles of RLS, primarily to refine the new atomic coordinates; (4) rebuilding portions of the molecule by IG where atomic positions do not coincide with the electron density; (5) four cycles of RLS with the atoms of step 4; and (6) final IG examination and adjustment.

(a) Restrained least-squares refinement

1. Parameter initialization and in-stream changes for the restrained least-squares refinement (steps 1, 3, 5, 7).

* Each map was computed with phases in which \(~1/10 \) of the atoms (differing atoms in each case) was omitted giving phases \(\phi_o - \phi_o^* \), where \(\phi_o \) is the phase calculated with all atoms and \(\phi_o^* \) is the phase contribution of atoms omitted. Only that part of the map where the atoms had been deleted was used for fitting.

† This is a standard feature of GRIP; i.e. up to three different types of maps can be stored and displayed simultaneously.

‡ For more detail see Girling et al. (1978).
ment and \(\langle \Delta F \rangle\) decreased from step to step (thereby increasing \(W_i\)), the intensity data took on greater weight as refinement progressed.

Estimated standard deviations for the atomic coordinates were not readily available and convergence for all steps was arbitrarily assumed if the residual was not likely to decrease by more than 0.01 in the next cycle or RLS refinement.

(2) Performance of the restrained least-squares (RLS). We have evaluated the results of the RLS from trends in the calculated real-space and reciprocal-space parameters, some of which are given in Table 1, and by the fit of the RLS atomic coordinates to the Fourier maps (see Fourier techniques). Upon an examination of the calculated parameters one can observe: (1) the pattern of convergence or divergence from the intensity data in reciprocal space and the restrictional data in real space; (2) the nature of the shifts in the atomic coordinates; and (3) the power or limitations of the method with respect to atomic placement.

The RLS convergence pattern for the initial intensity data set consists of large changes; in the residual and phases in reciprocal space, in the shifts in real space and an increase in the deviation from interatomic-distance idealization for the first few cycles. Later cycles show decreasing changes in the first three variables and a reassertion of the geometric idealization (see Table 1 and Fig. 2). Adding an equal number of higher-resolution intensity data points to the refinement will cause a repeat of the original pattern starting near the original \(R\) with the following exceptions: the shifts are generally smaller due to addition of higher-resolution data and the rate of change in phase angles decreases (\(\langle \Delta \phi_i \rangle\) in Table 1) for intensity data previously refined. The ideality of the interatomic distances (e.g. \(D_n\) in Table 1) is not well maintained in early cycles because of the large shifts demanded by the reciprocal-space (\(\Delta F\)) term in the minimization. In steps 3 and 5 the poor starting geometry of some side chains of the structure masks any trend towards an increase in \(D_n\) as was found in step 1.

The ‘convergence’ of the RLS refinement was determined by a change in \(R\) of less than \(\approx 0.01\). The average shift at this point was \(\approx 5\%\) of the nominal resolution of the intensity data. The final \(R\) is dependent upon the ratio \(W_i/W_i\) and easing the geometric restraint (increasing \(W_i/W_i\)) will significantly reduce the residual. The value used for \(W_i\) at the end of the refinement was approximately midway between \((1/\Delta F)^2\) and the average variance due to the counting statistics. An additional increase in the value of \(W_i\) may be justified, but a better estimate of the variance of \(F_s\) and the variance of \(d_i\) is needed to set the most realistic limits on the \(W_i/W_i\) ratio.

Since one of the purported strengths of RLS is the ability to shift atomic positions relatively large distances, it is appropriate to examine the shift magnitudes for each part of the refinement, locate those atoms which moved substantially during the refinement and measure the relative oscillation in their shifts. The pattern for average shifts (see \(\langle S_i \rangle\) and \(\langle S_T \rangle\) in Table 1) is that of large changes in the early cycles of a given step particularly with low-resolution data, followed by smaller changes in the later cycles with higher-resolution data. The shift magnitudes do not decrease as sharply during the progress of the refinement for a given step as in full-matrix least-squares and atoms moving relatively large distances (>0.5 Å) from their starting position still change significantly in the later cycles of the step (Girling, Schmidt, Houston & Amma, 1978). In the last two RLS steps (3 and 5), where the structure had previously been refined, the total average shift is about one half that of the initial step. The total \(\langle S_T \rangle\) of \(\approx 0.4\) Å for both steps may indicate the approximate precision of the coordinates, due in part to the absence of more high-resolution data. In contrast to collective parameters such as the average shifts, an examination (Girling, Schmidt, Houston & Amma, 1978) of the individual atoms moving >0.5 Å allows identification of specific locations in the structure which are rapidly changing. For instance, the 100 backbone atoms near the termini demonstrate a higher mobility than the remainder of the atoms, side-chain atoms show substantially greater freedom of movement than the backbone atoms. In this case large shifts were observed in the helices as well as in the turns. In the latter stages of the refinement (steps 3 and 5) there were no adjacent residues whose backbone atoms had average shifts >1 Å.

A crude measure of the change in the direction or oscillation of the parameter shifts during a given step was made by comparing the sum of the \(\langle S_i \rangle\)'s for the first \(n\) cycles in a step to the \(\langle S_T \rangle\) of the \(n\)th cycle. The requirement for the ideal case of no oscillation (uni-
The detection of incorrectly placed atoms which do not
violate the geometrical constraints. Moving relatively
few (~5%) atoms during a reconstruction affects the
progress of the structure refinement, as measured by R,
as much as or more than the final two or three cycles of
RLS in any given step (Table 1). It is not yet clear to
what extent the final cycles of RLS serve to improve the
Fourier maps derived from their results.

The power of RLS lies in its ability to improve the
protein atomic positions without the over-deter-
mination normally associated with small-molecule X-
ray structural refinement. A ratio of 1.3 structure
amplitudes per atom is sufficient because the 'observa-
tional' restrictions provide a much more powerful
means of retaining structural integrity than an equal
number of X-ray data points, assuming the initial struc-
ture is nearly correct. This concept is further supported
by our recent results on hemoglobin C (Paslay,
Houston, Girling, Amma & Huisman, 1979). A
surprising but useful result is that RLS was able to shift
several misplaced atoms in two side chains up to 20 A
towards their correct positions without destroying
molecular integrity.

(3) *Suggested changes for greater efficiency.* In
retrospect, Table 1 suggests several alterations in either
the initial parameters or their subsequent values to
achieve the highest rate of convergence consistent with
retention of molecular geometry and efficient use of
computer time. Specifically, the convergence criterion
and selection of the intensity data set may be liberalized
as there is no discernable tendency of the molecular
geometry to become ill-behaved during refinement.

To examine the convergence and the structural
changes, plots were made of the change per cycle of the
residuals, R_B and R_{EST}, of the average phase angle near
5 A, $\langle \phi \rangle$, of the average difference between the
observed and calculated structure factors, $|\langle F_o \rangle -
|F_c||$, and of the average shift of the atomic coordi-
ates, $\langle S \rangle$ (see Table 1 caption for definitions). Also
considered was the difference in the average total shift,
$\langle S_r \rangle$, between the beginning of the step to cycle n and
cycle $n - 1$ (for plots of $|\langle F_o \rangle - |F_c||$ and the average
phase angle vs n near 3 A, see Girling, Schmidt,
Houston & Amma, 1978). These plots (Fig. 2) for step
1 showed that the significant changes in the structure
were completed in the early cycles for a given X-ray
intensity data set, suggesting the arbitrary convergence
criteria of $\Delta R_B \sim 0.01$ was too low. Raising the ΔR_B to
0.02 eliminated ‘fine tuning’ cycles such as 4, where the
average shifts, $\langle S \rangle$, were less than half of the next cycle
and cycles 7–12, where only small changes were
registered in the plots of $\Delta(S)$, $\Delta \phi$, etc. Deletion of
cycles 4 and 7–12 could have saved as much as 15 h
CPU time, (Table 1). Steps 3 and 5 generally meet the
$\Delta R_B \sim 0.02$ criterion except for the final cycles.

Given $\Delta R \sim 0.02$ as a convergence criterion, the
selection of the intensity data set can be improved by
doubling the number of reflections from one converged
data set to the next set at higher resolution. The effect
of differing sizes of intensity data sets is illustrated by
steps 3 and 5. Step 3 has three cycles with low-
resolution data followed by two at high resolution with
a total reduction in R of ~0.08 in ~33 h CPU time* as
opposed to step 5 in which four cycles with high-
resolution data reduced R by ~0.09 in 42 h CPU time.* The most efficient method seems to be that used
in step 3.

Care should be taken when applying these results to
data where the starting coordinates are not as well
determined as hemoglobin was in this case. The
restraints serve to retain a generally correct original
model as opposed to improving initial coordinates from
a heavy-metal isomorphous-replacement phased
Fourier map. Some investigators (Fermi, 1975; Deisen-
hofer & Steigemann, 1975) reported average shifts of
up to 50° from the MIR starting phase angles during
refinement as opposed to the 37° observed for
Hb(DIII). It remains to be determined whether differ-
ences in the starting models implied by these phase-
shift differences substantially affect the convergence of
RLS.

(b) *Fourier techniques*

This analysis was restricted to two exhaustive studies
rather than numerous attempts to define the fit of small
portions of the molecule during the course of the refine-
ment. The first study was divided into two parts. The
first (step 2, Table 1) utilized in-house graphics and the
second part (step 4, Table 1) used the GRIP system.

(1) *Initial Fourier structure evaluation and refine-
ment (steps 2, 4).* In step 2, the first part of the initial
study, the residues in which one or more atoms had not
been previously located were superposed on the appro-
priate electron density map. The 442 missing atoms
from 153 residues were located but the placement of 27
of them was at a low confidence level. No attempt was
made to idealize the geometry of the additional atoms
and their coordinates were simply estimated from the
graphics display. The new atomic positions were dis-
played and some blatantly incorrect geometries were
Improved before step 3.
For the second part of the first study, step 4, where the atoms located in step 2 had been refined, the new coordinates (step 3) and the eight Fourier maps used in step 2 were displayed on the GRIP system. Large portions of the molecule could now be manipulated with relative ease. Gross corrections (>1 Å) were made to 249 residues, but only 46 of these were so large that RLS could not make the appropriate change. The atoms not examined on GRIP were displayed and changed on the PDP-11 CRT (due to time limitations, the first half of the α chain and the heme groups). The most significant changes in configuration involved long sidechains or rebuilding the chain termini, but there were a few sections (two or more adjacent residues), primarily at the chain termini, which did not fit particularly well, even after exhaustive trial and error fittings.

The quality of the electron density maps used in both steps was variable, but they yielded enough well-defined density to place ~95% of the main chain and ~60% of the side-chain atoms within 1 Å. When superimposed on the maps the favorable aspects of the molecular structure were: the retention of geometry in spite of background noise in the electron density; less than 10% of the atoms could be shifted to a better fit in the density without a major change in configuration; and the ease of detecting ill-fitting areas in the structure. Major difficulties encountered in the fit were: the variance in the contour levels required to outline a molecular position; the absence of positive electron density surrounding the main chain (~3%) and the side chains (~10%), particularly at protein–solvent interfaces and at the ends of the protein chains; background levels which would allow alternate positions for side chains; a change in the handedness of approximately 10% of the residues (now restricted in a new version of RLS by Hendrickson, 1978); and atoms in well defined density having non-bonded contacts at variance with recognized geometry. The new RLS is also substantially improved in this respect and we are also using the energy-minimization procedure of Hermans, Ferro, McQueen & Wei (1976) to alleviate unreasonably close contacts.] Although the parts of the eight modified F_0 maps which we used may be relatively unbiased, they had a generally high noise level due to series termination errors. The noise level may have resulted in some spurious ‘improvements’ where only small changes were made to the atomic positioning, but the large changes (46 residues) significantly improved the compatibility of the atomic positions with the map. The large number of residues adjusted (~40%) do not adequately reflect the generally correct nature of the structure.

(2) Final Fourier study (step 6). The final phase angles from step 5 were used with (ΔF) and (2F_0 – F_c) in order to calculate two electron density maps. The structural changes made by superimposing all four chains and heme groups on the two maps were either a residue which could be clearly shifted into a better position or short contacts which dictated small adjustments. In all, 52 residues were repositioned because they were clearly incorrect and 41 required minor adjustments because of short contacts. Particular attention in this case was paid to the fit of the atoms involved in intermolecular contacts less than 5 Å. By generating the symmetry-related atoms, the re-fitting was satisfactorily completed except for the β_1(1–8) – β_2(1–8) interaction about the twofold rotation axis. There were only a few other parts of the polypeptide chain whose positioning was unsatisfactory. The heme groups were well defined and peaks in the difference map suggest some occupancy of the sixth coordination site of the iron as would be expected from the cyanomet form of the hemoglobin. The planarity of the heme group was approximately maintained and the iron atoms showed a tendency to be nearly in the heme planes although the latter observation may be an artifact of the restraints.

The restraints on the polypeptide appeared to have achieved the desired effect except for an occasional atom which showed a tendency to deviate from its designated plane.

Finally, the overall fit was considerably better than the previous Fourier refinement. Only 51, or less than 11%, of the residues required serious retrofitting and less than 6% still needed some attention.

The electron density maps were much improved relative to the modified (F_0) maps in the previous Fourier study. The (2F_0 – F_c) map showed few breaks in the main chain density and most side chains (~85%) fitted readily into positive density. In contrast, the (ΔF) map ranged from relatively simple (zero) to very complicated (noisy). The background level seemed to correlate with position, the interior of the molecule being much freer of difference density than the exterior. Non-helical parts of the molecule exposed to solvent were likely to be surrounded by a hollow column of positive density. Proper adjustment of the thermal parameters probably could help to alleviate this feature.

Conclusions

RLS refinement coupled with IG offers an attractive alternative to real-space refinements. Real-space methods have a clear advantage in their relatively modest computing times (Freer, Alden, Carter & Kraut, 1975) whereas RLS–IG is more automated and converges faster. The most advantageous method is dependent upon the cost of computing vis-à-vis the availability of manpower, but RLS is becoming more attractive as computing power increases and its cost decreases. The success of RLS was diluted in the present refinement by the extensive use of electron density maps.
Recent experience suggests that conventional
$2F_o - F_c$ and $F_o - F_c$ maps can be used efficiently in
reconfiguring incorrectly placed atoms. Where these
maps are ill-defined, a substantial improvement may
often be obtained by deleting those atoms from the
model structure which do not fit the map, refining the
structure by RLS and calculating a difference map.
This method minimizes bias and series termination
errors.

Given the improved RLS program and present
experience, we predict that an initial RLS will satisfac-
torially fit more than two thirds of the residues in a
structure such as Hb(DIII). An exhaustive rebuilding
with IG such as GRIP should reduce the structural
ambiguities to less than 10% of the residues and less
than 5% of the atomic positions. Further RLS can then
be used to re-idealize the geometry and reduce the
residual for final difference maps. Given IG and a large
computer, the crystallographer should be able to com-
plete the high-resolution refinement of a 50,000
Dalton structure in one man year. A somewhat dis-
appointing feature, however, is that RLS at this time
is not a ‘hands off’ refinement. Inclusion of inter-
molecular constraints and variable atom tempera-
ture --- factors may improve this situation, but IG is likely to
remain an important factor in such refinements for
some time.

We wish to express our appreciation to J. H.
Konnert and W. A. Hendrickson for the restrained
least-squares program and their advice concerning its
use. We also wish to thank the University of South
Carolina Computer Services Division and, in par-
ticular, L. Zarpentine for program scheduling. The
major portion of the interactive graphics results were
derived with the aid of the GRIP-75 molecular graphics
system built at the University of North Carolina
Department of Computer Science with the help of
many users. Major system contributions were made by
E. G. Britton, J. S. Lipscomb and M. E. Pique, under
the direction of W. V. Wright, J. E. McQueen Jr and J.
Hermans. F. P. Brooks Jr is Principal Investigator. The
system has been developed under NIH Biotechnology
Research Resource grant No. RR00898, NSF grant
No. GJ-34697, AEC contract No. AT-(40-1)-3817,
and the IBM Corporation. Day-to-day administrative
assistance on GRIP was rendered by J. Leonarz and
real-time programming handled by W. V. Wright, M.
Pique, J. Lipscomb, W. Siddell and D. Voss. The PDP-
11 stereo display was derived from a program kindly
supplied by B. Wishner and Dr W. E. Love. S. B. Belk
and E. Reeves provided local software support and
advice on interfacing the various computer programs.
This work was supported by NIH grant HL-15158.

References

Biol. 123, 15–33.

Press.

Collins, D. M., Cotton, F. A., Hazen, E. E. Jr, Meyer,
1053.

B31, 238–250.

Girling, R. L., Schmidt, W. C. Jr, Houston, T. E. &
PPOT, Department of Chemistry, University of South
Carolina, Columbia, SC 29208, USA.

GRIP (1975). GRIP-75 molecular graphics system built at
the University of North Carolina. See acknowledgments.

Lists Compiled from the Residues of Diamond (1974) and
Small Molecule X-ray Structures.

Symposium on Biomolecular Structure, Conformation,
Function and Evolution. In the press.

Hermans, J. Jr, Ferro, D., McQueen, J. Jr & Wei, S. C.
(1976). Environmental Effects on Molecular Structure

A30, 730–739.

124, 523–534.

Huber, R., Kukla, D., Bode, W., Schwager, P., Bartels,

201–228.

Paslay, R. C., Houston, T. E., Girling, R. L., Amma,

Acad. Sci. 71, 3736–3740.

Schmidt, W. C. Jr, Girling, R. L., Houston, T. E.,

Sussman, J. L., Holbrook, S. R., Church, G. M. & Kim,

Sussman, J. L., Holbrook, S. R., Warrant, W., Church,

Watenpaugh, K., Sieker, L. C., Herriott, J. & Jensen,