02.1-18 THE STRUCTURE AND heme ENVIRONMENT OF BEEF LIVER CATALASE AT 2.5 Å RESOLUTION. By
Mathur R. N., Murphy, Thomas J. Reid III, Andrew Scigman, Nobutada H., M. Donnay L. and Michael G. Rossman, Departments of Biochemistry and Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA.

Most of the amino acid side chains of beef liver catalase were clearly identifiable in the 2.5 Å resolution electron density map and are in good agreement with the sequence (W. A. Schroeder et al., Arch. Biochem. Biophys. 132, 653-655, 1969). The tertiary structure of one subunit consists of a large antiparallel β-pleated sheet domain with helical insertions followed by a smaller domain containing four α-helices. The heme group is buried at least 20 Å below the molecular surface and is accessible by a channel lined with hydrophobic residues. The proximal ligand is tyrosine 557 while histidine 7 and Asn 147 are the important residues on the distal side of the heme. The inhibitor 3-amino-1,2,4-triazole, which has been shown to covalently bond to His 74, can be built into the heme cavity with its N(2) atom coordinated to the heme iron.

Catalase (H.O₂: H₂O₂-oxidoreductase, EC 1.11.1.6) is an enzyme responsible for decomposition of hydrogen peroxide to molecular oxygen and water. Crystals of catalase from fungus Penicillium viridis (MW 280000) were grown in a preparative ultracentrifuge and belonged to space group P2₁2₁2₁ with 1/2 molecule per asymmetric unit. The unit cell parameters are a = 144.4, b = 133.8, c = 67.6 Å. Intensities were collected on a four-circle diffractometer. Phase determination was based on data for two derivatives (K₂UO₄F, K₂Pt(NO₃)₄) up to 3.0 Å and for two others (K₂PtCl₄, Pb(CH₂COO)₂) up to 4.5 Å. The 6 Å electron density map and heavy-atom sites have led to a recognition of 4 equivalent protein subunits related in pairs by a 2-fold non-crystallographic axis (Vainstein et al., Dokl. Akad. Nauk S.S.S.R. (1979) 246, 220). After two cycles of phase refinement based on the method proposed by G. Briouge (Acta Cryst. (1976) A32, 592) an improved electron density map made it possible to trace the polypeptide chain (Vainstein et al., Dokl. Akad. Nauk S.S.S.R. (1980) 253, 242) and find preliminary co-ordinates of 574 α-carbon atoms.

The polypeptide chain in the P. viridans catalase subunit forms three domains. About 350 residues starting from the N-terminus constitute the largest domain. It contains a β-sheet of 8 strands with helical insertions between them, forming a distorted barrel. An irregular region of about 60 residues forms a connection between the N-terminal domain and a smaller one of 70 residues packed in 4 successive helices. The third C-terminal domain, comprising 160 residues, is similar in structure to flavodoxin.

The Bijvoet-difference Fourier map based on an additional measurement of anomalous scattering on a native catalase crystal showed that the heme group is situated within the N-terminal domain. The distances between iron atoms in different subunits were found to be 31, 35 and 46 Å.

Crystals of P. viridans catalase inhibited by 3-amino-1,2,4-triazole (AT) were obtained and 6 Å resolution data were collected. The difference Fourier map showed that the binding site of AT is situated about 5 Å of the heme group and its center is shifted to a periphery of the porphyrin.

More detailed description of the active site could be done when the sequence is known.

02.1-20 THE STRUCTURE OF CYTOCHROME C3 FROM DESULFOVIBRIO VULGARIS, MIYAZAKI AT 2.5 Å RESOLUTION. By F. Hasegawa, G. Yagi, H. Sano, M. Kusunoki, I. Matsura, M. Iwasawa, H. Kimkuo, T. Yamamoto, H. & H. Taniwuchi, Institute for Protein Research, Osaka University, Suita, 565, **Faculty of Science, University, Toyonaka, Osaka, 560 **Department of Chemistry, Faculty of Education, Nihonkou, Shizuoka University, 422, ***Institute for Molecuar Science, Okazaki, 444, JAPAN.

Cytochrome C₃, an electron carrier to hydrogenase [EC1.12.2.1] in sulfate-reducing bacteria has an unusually low redox potential, which seems to be attributed to the fact that it has four heme groups. Some kinds of cytochrome C₃ have been isolated and characterized from various strains of sulfate reducing bacteria to date. One of them, cytochrome C₃ from Desulfovibrio desulfuricans, Norway has been investigated by X-ray diffraction method and the preliminary result was reported(Hasegawa et al. (1979) Nature 282, 908).

Here, a brief description of the result of our X-ray structure determination of cytochrome C₃ isolated from Desulfovibrio vulgaris, Miyazaki at 2.5 Å resolution is presented. The amino acid sequence study has been completed(Shinkai et al. (1980) J. Biochem. 87, 1747) and the 72.3 % of the sequence differs from that of strain Norway.

The protein was isolated and purified according to the procedure of Yagi & Maruyama. Crystals of good quality have been obtained by the vapor diffusion method(Shindo et al. (1979) J. Biochem. 86, 269). Heavy atom derivatives were prepared by the soaking method. Several kinds of heavy atom reagents were examined, among which MgPtCl₆, K₂Pt(SCN)₆, K₂UO₄F₅ and K₂Cr₃Cl₆ gave the best results. The phase coordinates from isomorphous replacement method. The average figure of merit 0.57 for 4.0Å resolution data were collected up to 2.5 Å resolution at 1,17°. The protein phases were used as input data for the solvent flattening method. The average figure of merit 0.77 for 4.0Å resolution data were collected up to 2.5 Å resolution at 1,17°.

The electron density map was of excellent quality and it was easy to trace the polypeptide chain in the Richards' box, and Kendrew-type model (Ramachandran) was constructed referring to the primary structure already reported. Four hemes and amino acid residues including side groups could be located on the map, except for some atoms in side groups of Leu 1, Pro 5 and Lys 3 which may be ascribed to the positional disorder in N-terminal residues. The stereo manager connected carbons coordinates with heme groups are