02.1-43 STRUCTURAL STUDIES OF RIBULOSE BISOXYPHOSPHATE CARBOXYLASE/OXYGENASE. By U.W. Smith, S.H. Suh, and the Department of Physics, University of California, Los Angeles, and R. Hamlin, A. Howard, C. Nielsen, N.H. Xuong, Department of Physics, University of California, San Diego, California.

Ribulose bisoxyposphate Carboxylase/Oxygenase (Rubisco) catalyzes the initial step common to both the pathways of photosynthesis and photorespiration, and is said to be the most abundant protein on earth. Rubisco from tobacco contains eight large subunits (N_e = 55,000) and eight small subunits (N_m = 14,000), arranged with symmetry 422. The enzyme crystallizes in space group I422 with a = 148.7 Å and c = 137.5 Å. We have determined the structure of this enzyme to a resolution of 3.0 Å and have interpreted the electron density in terms of the subunit locations. All of the data used in the structure determination were collected on the Mark I multivite area detector currently in operation at UCSD. Native data to 2.9 Å Angstroms resolution have been obtained using the Mark II version of the area detector. This enzyme is the first structure of this size to be solved with the use of the multivite area detector. We have also determined (Johal et al., J. Biol. Chem., 255, 8873-8880 (1980)) that crystals of Rubisco from other plant species are isomorphous with those from tobacco. This may be related to the tendency of Rubisco to be crystalline in the chloroplast.

02.1-44 TYROSYL-tRNA SYNTHETASE FORMS A NUCLEOTIDE BINDING FOLD. By P. Brick, T.K. Bhat and P.H. Blox, Blakely Laboratory, Imperial College, London SW7 2SB.

Tyrosyl-tRNA synthetase from Bacillus stearothermophilus is a dimeric molecule of approximately 30,000 daltons. The crystal structure originally reported by Irvin et al. (J.Mol.Biol. (1976) 105, 577) has been reinterpreted using a new density modification technique (Bhat and Blox, this volume). The structure consists of an amino-terminal α/β domain, a domain containing five α-helices, and a region of at least 9% amino-acids at the carboxyl-terminus which appears to be disordered. The re-interpretation reveals two new α-helices in the α/β domain, and some changes in chain connections. The carboxyl-terminal sheet is in the order A F E B C D, with A antiparallel to the others. The arrangement of strands B to F is topologically identical to arrangements found in many other proteins, including the first five strands of the sheet in the NAD-binding domain of the dehydrogenases.

In the complex with tyrosyl-adenylate (Rubin and Blox, J.Mol.Biol. (1980) 145, 489), an intermediate in the reaction catalyzed by the enzyme, the adenine lies near the carboxyl-terminal end of strands E and F of the A-sheet, with the ribose between the ends of strands B and E. This is similar to the nicotinamide position in dehydrogenases. The tyrosine moiety occupies a pocket at one side of the sheet, close to the ends of strands B and C. This tyrosine orientation is quite different from any part of the coenzyme in dehydrogenases.

02.1-45 RÉFINEMENT DE L'ISOZYMÉE B DE CARBONIC ANHYDRASE. By M. Hatanpää, B. Lannigan, and J. Santen, Neutron Physics Division, Bhabha Atomic Research Centre, Trombay, Bombay 400 085, India.

The structures of human erythrocyte carbonic anhydrase isozymes B and D are refined by the method of stereochemically restrained least-squares. Initial model for the B enzyme has been improved by model fitting using an interactive graphics display and real-space refinement. Restraints on 5,515 inter-atomic distances, 345 planar groups and 298 chiral centers have been imposed, while refining 5,931 positional parameters from 1,977 atoms (including one Zn²⁺ ion), against 3,723 structure amplitudes in the d-spacing range of 5 to 3Å chosen from 15,524 observations with d > 1.98 Å. The molecular model has significantly improved in 4 cycles of refinement during which the R-factor has changed from 0.415 to 0.365. Work is currently underway to locate the remaining 7 residues of the protein and solvent molecules and to refine the structure further. Similar procedure is pursued in the refinement of the C enzyme also. The initial model has 2,673 atoms, 1,05,674 observations with d > 1.20 Å. Work on the refinement of the A enzyme is also underway. The model contains 2,199 atoms from 256 residues (out of a total of 259) and one Zn²⁺ ion. Thus a total of 6,120 positional parameters are refined using structure-amplitude data in the d-spacing range of 5 to 3Å chosen from more than 17,000 observations with d > 1.97 Å. Restraint on 5,717 distances, 353 planar groups and 308 chiral centers are imposed during the refinement. A comparison of the two carbonic anhydrase structures and function in the light of the refinement will be discussed.

02.1-46 THE STRUCTURE OF LIPASE AT 2.5 Å RESOLUTION. By Y. Hata, N. Tanaka, M. Kakudo, A. Sugihara*, M. Iwai* and Y. Usajioka*, Institute for Protein Research, Osaka University, Suita, Osaka 565, Japan; * The Osaka Municipal Technical Research Institute, Kitasagamachi, Kita-ku, Osaka 530, Japan.

Lipase from Geotrichum candidum (ATCC54614) is a hydrolase of three ester bonds in fats and fatty oils, especially trilinolein. The molecule (Mr=55,000) consists of a protein (450 amino acid residues) and 7% of carbohydrate. The primary sequence is not known. The crystals were grown from 3% enzyme solution, pH 5.6, kept at 10°C; space group P2₁, a=59.5, b=83.6, c=56.1 Å, α=99.9°. These crystals were cocrystallized with 0.37% glutaraldehyde in order to reduce their solubility in solutions of heavy-atom reagents. A 2.6 Å resolution electron density map was calculated with double isomorphous replacement technique (K. Kato, U. Aoki, A. Sugihara). The density was tentatively interpreted and the polyamide banana model (2 cm/A) was built with an optical comparator.

The molecule is ellipsoidal with approximate dimensions 70 x 50 x 50 Å. About 20% of amino acid residues are in α-helix conformation and about 4% in β-structure. The molecule is composed of two parts from a viewpoint of the arrangement of the secondary structure. One part (part A) is rich in α-helices and contains seven of the nine α-helices. The other part (part B) consists of three β-strands and two α-helices which form a β-sheet sandwiched between the α-helices. The active site of the enzyme was estimated as around one of the Pt atoms which inactivates the enzyme by binding to the histidy1 residue in the active site (J. Biochem., 86, 1821 (1979)). The possible active site is in the vicinity of the longest α-helix. A long channel leads to the surface from the site and its end is surrounded with α-helices.