**03.2-11** CRYSTAL STRUCTURE OF GLYCINE ORTHOPHOSPHATE By J. K. Mohana Rao\* and R. Thulasidhass<sup>†</sup>, Department of Physics, Madurai-Kamaraj University, Madurai-625021, India. \*Present address: Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907. †Present address: Department of Physics, G.V.N. College, Kovilpatti, Tamil Nadu, India.

Studies on amino acid phosphate compounds are expected to be an important source of information for understanding the protein-nucleic acid interactions and with that end in view, the crystal structure of the title compound was studied, Glycinium orthophosphate (NH<sub>3</sub><sup>+</sup>CH<sub>2</sub>COOH H<sub>2</sub>PO<sub>4</sub><sup>-</sup>) crystallizes in a tetra-molecular unit cell of dimensions a = 9.63, b = 7.89, c = 9.24 Å,  $\beta$  = 114° and the space group is P2<sub>1</sub>/c. Good single crystals were grown from a saturated aqueous solution containing glycine and orthophosphoric acid in stoichiometric proportions. Three-dimensional intensity data were collected by the multiple film equi-inclination Weissenberg technique using CuKa radiation. The crystal structure, solved by the Patterson and the Fourier methods, was refined to an R value of 0.08 for 1000 observed reflections. All hydrogen atoms except one was located. The amino acid exists as a positive ion (NH<sub>3</sub><sup>+</sup>CH<sub>2</sub>COOH) in this structure and there is a strong  $0^{+}$ ······· 0 hydrogen bond between the carboxyl and the phosphate oxygens. The phosphate groups themselves are linked by hydrogen bonds and form extended chains along the b and c axes.

 $03.2\mathchar`-12$  STUDIES ON CONFORMATION OF PROLYL RESIDUE IN PEPTIDES: THE CRYSTAL AND MOLECULAR STRUCTURE OF L-PROLYL-L-METHIONINE MONOHYDRATE. By V.S. Yadava and V. M. Padmanabhan, Neutron Physics Division, Bhabha Atomic Research Centre, Trombay, Bombay 400 085, India.

The prolyl residue can have two conformations  $_{\overline{O}}$  one with C<sup>Y</sup> and C' atoms on the same side of NC<sup> $\alpha$ </sup> C<sup> $\beta$ </sup> C<sup> $\delta$ </sup> plane and the other with C<sup>Y</sup> on the opposite side of C' (Ramachandran et al. (1970), Biochem. et Biophys. Acta, <u>221</u>, 165-181).

L-Prolyl-L-methionine crystallizes in the monoclinic space group P2<sub>1</sub> with a = 19.385(4), b = 5.482(1), c = 6.414 Å,  $\beta$  = 93.21(8)° and Z = 2. From the Trombay computer-controlled diffractometer data (1072 observed reflections), the crystal structure was solved by direct methods and refined by the least-squares procedure to an R index of 0.084.

The crystal structure is a disordered one. The pyrrolidine ring exists in two conformations in the ratio of 3:2, with C<sup>7</sup> atom of the ring statistically situated on both sides of NC<sup>6</sup> C<sup>6</sup> of plane. The bord lengths and bond angles for the peptide have values close to those expected except those for the pyrrolidine ring. The molecule is in the extended conformation ( $\Psi = 166^{\circ}$ ,  $\phi = 70^{\circ}$ ) and in <u>trans</u> configuration ( $\omega = 168^{\circ}$ ). The sulphur and the terminal methyl group have large thermal parameters. The hydrogen bords through the water molecule stabilize the structure. 03.2-13 CRYSTAL STRUCTURE OF N-(p-AMINOBEN-ZOYL)-L-GLUTAMIC ACID HYDROCHLORIDE. By <u>Chandana Chatterjee</u>, J.K.Dattagupta and N.N.Saha, Saha Institute of Nuclear Physics, 92 A.P.C. Road, Calcutta-700 009, India.

N-(p-Aminobenzoyl)-L-glutamic acid ( $C_{12}$  H14 N2 O<sub>5</sub>), a major portion of folic acid, is a sulfanilamide antagonist. The title compound crystallises in the monoclinic space group P2, with a=11.819(3), b=4.924(1), c=12.085(1)Å,  $\beta$ =102.4(1)°, Z=2. The structure was solved by direct methods and refined by blockdiagonal least-squares technique, with anisotropic temperature parameters for nonhydrogen atoms and isotropic ones for hydrogens, to an R value of 0.12 for 819 diffractometer data. Fara-aminobenzoic acid part of the molecule is linked to glutamic acid via a peptide-like linkage with C-N distance of 1.33 Å. The side chain in glutamic acid is buckled with C<sup>6</sup> gauche to C<sup> $\alpha$ </sup> with respect to C<sup> $\beta$ </sup>-C<sup> $\gamma$ </sup>( $\chi^2$ =77.2°). The  $\alpha$ -carboxyl C is trans to C<sup> $\gamma$ </sup> with a torsion angle of C-C<sup> $\alpha$ </sup>-C<sup> $\beta$ </sup>-C<sup> $\gamma$ </sup>= -178.6°. The  $\alpha$ -carboxylic group and the  $\alpha$ -amino nitrogen are not coplanar, the angle of the  $\alpha$ -carboxylic group being 26.7°. All the available hydrogen atoms take part in hydrogen bonding and the structure is stabilised by a three-dimensional network of hydrogen bonds of types N-H····Cl, O-H···O and N-H····O. No intramolecular hydrogen bonds have been observed.

03.2-14 THE X RAY ANALYSIS OF HUMAN A.C.T.H.FRAGMENTS by G.Précigoux, B.Busetta, S.Georffre and <u>M.Hospital</u>, Laboratoire de Cristallographie, Université de Bordeaux I - 33405 - Talence-Cedex - France.

Among several crystallization trials with numerous fragments (or analogs) of human A.C.T.H., only two gave large enough crystals for X-ray study.

The tetrapeptide L-tyrosyl-L-prolyl-L-asparaginyl-L-glycine, the 23-26 fragment, crystallizes by free diffusion between a concentrated peptide solution in methanol-water and chloroform. The crystal is orthorhombic, a = 8.896(2), b = 12.858(3), c = 18.146(4) Å, space group P  $2_{12}_{12}_{1}$  with four molecules per unit cell. The final R value is 0.033. The molecule exists in the crystal as a zwitterion. The peptide main chain is in extended conformation. The rather high density (1.44 Mg.m<sup>-3</sup>) is explained by a strong intermolecular hydrogen bond network. There is no intramolecular hydrogen bond.



The tetrapeptide L-methionyl-L-glutamyl-L-histidyl-L-phenylalanine, the 4-7 fragment of A.C.T.H., crystallizes in the orthorhombic system with Z = 4, a = 20.5, b = 27.7, c = 4.8 Å.

C-66