05.1-38

ON THE ORTHO-CLIMO PEASE TRANSTIION OF FERPOSILTTE (FeSiO3) AND Fe-RICH PyROXEMES. By S. Sueno and M. Kimata, Department of Geoscience, The University of Tsuruba, Ibaraki, 305, Japan.

Temperature induced orthorhombic (Pbea)-monoclinic(c2/c) pyroxene phase transition was studied using high-temperature precession camera method. The starting meterials were synthetic ortho-pyroxenes with the composition of (Fs), (Wo.02F5.98), (W0.05Fs; 95), [W0.05(Fs.75 En.25).95], (Fs.9En.1) and (Fs.8En.2) where Fs=Fesion, $\mathrm{WO}=\mathrm{CaSiO} 3$ and $\mathrm{En}_{\mathrm{MgSiO}}^{3}$. Ortho-pyroxene with the Fs composition showed reversible and topotaxial transformation to the twined clino-pyroxene at $1020^{\circ} \mathrm{C}$. with the orientation (ä̈rtho//ä̈lino, cortho//cclino). Wo free pyroxenes transformed to clino-phase topotaxially with the orientation same as those on Fs, but they dia not transform reversibly to the ortho-phase on cooling. The pyroxenes with wo composition transformed rapidy to twined clino-phase but the orientations between both phases were quite haphazard for each run.
Smyth has suggested that on the coherent pyroxene transition MI site in ortho-phase becomes \mathbb{N} site in clinophase and M2 site in ortho-phase becomes site in clino-phase (Smyth, Amer. Mineral. (1974) 59, 345). The results of the present study may support his suggestion as the coherent pyroxene transitionswere observed only on pure Mg and Fe end-member pyroxenes in which both M-sites are occupied only by Mg and Fe. In ortho-pyroxene, Ca ion is in 12 site and it could not be entered to MI site in clino-phase because of its large ionic radius. This makes the coherent transition impossible and brings about the "nucleus and growth type" transition. Whereas smaller Mg ion is in M site in orthophase and it may be allowed to enter we site in clino-phase, but may resultinsome distortion in clinophase structure which prevents the reverse transition to ortho-pyroxene on the cooling stage.
05.1-39 THERNAL BEHAVIOUR OF MUSCOVITE - OD STRUCTURAI ASPECTS, By K. Dornberger-Schiff and K.-0, Beckhaus, Central Institute of Physical Chemistry, Academy of Sciences of the G.D.Ra, Berlin-Adlershof, German Democratic Republic

Muscovite crystals are known to undergo irreversible changes when heated. These changes differ qualitatively when heated up to temperatures $T<700^{\circ}$ and $T>700^{\circ}$.
In order to elucidate the changes in structure, Weissenberg diagrams of heat-treated muscovite single crystals $2 \mathrm{M}_{\text {, }}$, quenched after heating, have been taken and discussed: higher temperature treated (HTT) and lower temperature treated (ITT) compared with 700°. (hkl) reflections (orthonexagonal) with kt3n are diffuse (direotion 0^{*}) for ITT and HTT crystals, (hkl) with $k=3 n$ are different from the untreated crystals only for the HTT crystals.
Furthermore, IR investigations showed that no H atoms are present in the HTY crystals, indicating the loss of every second OH group together with the H atom of the other OH group, in agreement with earlier results (Peuker, private communication). The results of struoture determinations of ITT and/or HTT crystals, carried out also with the help of OD theory, are to be presented.
Fig. T Tentative sítructure of a) ootahedral (idealized) sheet before, b) after dehydroxylation (5-coordinated).

05.1-40 RIGID-BODY ANALYSIS OF DIAMANTANE AT 7 K . By E.H.M. Evans, R. Hine and J.P.G. Richards, Department of Physics, University College, P.O. Box 78 , Cardiff CFI 1XL, U.K.
Diamantane ($\mathrm{C}_{14} \mathrm{H}_{20}$) is a cage-like molecule which at room temperature crystallises in Pa3. It has been shown by Raman spectroscopy (Jenkins and Bates, J. Phys. C: Solid State Physics (1979) 12, 1003) that a phase transition occurs at 35 K involving a change of space group. Neutron Bragg intensities have been collected at 7 K , and the results of a rigid-body analysis of these will be presented. Preliminary results indicate no change of space group and no substantial reorientation about the three-fold axis.

