07.6-01 THE ABSORPTION AND DESORPTION OF hydrogen and deuterium in Mg ${ }^{\text {Ni. }}$. By A.F. Andresen, E. Andersen and K . Pettersen, Institute for Energy Technology, Kjeller, Norway.

Neutron diffraction offers a unique possibility of studying structural changes during the absorption of gases under high pressure and temperature. This we have utilized to study the structural transformations and the kinetics in the absorption and desorption of hydrogen and deuterium in $\mathrm{Mg}_{2} \mathrm{Ni}$. The processes limiting the rate of absorption at the different compositions have been identified and characteristic differences between the absorption of hydrogen and deuterium have been found.

The hydride $\mathrm{Mg}_{2} \mathrm{NiH}_{4}$ shows an allotropic transformation between $\frac{4}{a}$ high temperature cubic structure and a low temperature monoclinic structure. The transition is connected with a hysteresis and shows a marked isotope effect. $\mathrm{FOr}_{\mathrm{O}} \mathrm{Mg}_{2} \mathrm{NiH}_{4}$ we find the transition at $237^{\circ}-246^{\circ} \mathrm{C}$ and fo $\mathrm{Mg}_{2} \mathrm{NiD}_{4}$ at $229^{\circ}-238^{\circ} \mathrm{C}$.
be monodispersed into rectangular groups of 25 overlapped primary C_{6} rings and by intramolecular interaction become 5 times superposed in thickness making up 20.5 \%; this results as equidimensional parallelepipedon of crystallizing unit consisted of 1500 C atoms and bounded by (111), (110) and composite (100) planes exposing to-and-fro shifted elements. The X -ray photoelectron spectrogram of the $\mathrm{M}-\mathrm{C}$ film containing about $32 \mathrm{wt} . \% \mathrm{Ni}$ within $200 \AA$ from the interface with diamond is not of zero-valent Ni but in a vailence state of Ni (II) ${ }^{3}$.

Fig. 1. The structure of hexagonal graphite intercalated with Ni or M atoms in Comocm sandwich (without showing the puckering and shifting of c lattice).
07.8-01 STRUCTURE OF A MLXED CHALCOGENIDE OF INDIUM WITH APPROXIMATE COMPOSITION $\operatorname{In}_{2} .03 \mathrm{X}_{3}$ ($\mathrm{X}=\mathrm{S}$, Se AND Te). By C. Svensson and J. Albertsson. Inorganic Chemistry, Chemical Center, University of Lund, P.O.B. $740, S-22007$ Lund, Sweden.

The black title compound was synthesized from the pure elements and an analysis indicated the composition S : Se:Te $\simeq 1: 2: 3$ (Titze (1981) to be published). A number of semiconducting indium chalcogenides have been described but this seems to be the first one containing all three of S , Se and Te . It is rhombohedral with space group $R \overline{3}$ and lattice constants $a=14.0028(10)$ and $c=35.228(5)$ \AA (hexagonal axes). The structure was solved and refined using 4535 observed X-ray diffraction data.

A feature of several indium chalcogenides which has not been appreciated until now is the appearance of a small amount of univalent indium with positional disorder. The present compound should be formulated $\operatorname{In}_{1-x}^{I} \operatorname{In}_{25+x}^{\text {III }} X_{38+x}$ with $\frac{x}{3} \simeq 0.3$. The $\operatorname{In}(I)$ atom is located just off a point with $\overline{3}$ symmetry in an enlarged octahedral interstice and coordinated from one side by three Te . One of the 25 In(III) has octahedral coordination (by six Te atoms) and the others are tetrahedrally coordinated. The structure, which is a three-dimensional network, is pseudosymmetric such that the c-axis is doubled. The $\operatorname{In}(I)$ atoms correspond to the octahedral $\operatorname{In}(I I I)$. The cell with half the c-axis is a pseudocube with $a=10.0 \mathrm{R}$ and $\alpha=89.0^{\circ}$ (rhombohedral axes) but the structure is not of the spinel type. The tetrahedral $\operatorname{In}(I I I)-X$ bonds range from 2.557 (3) to $2.825(2) \AA$; the octahedral In(III) -Te is $2.975(2) \AA$ and $\operatorname{In}(\mathrm{I})-\mathrm{Te}$ is $3.250(5) \AA$.

