THE CRYSTAL STRUCTURE OF THE TERNARY OXIDE
Li2SiO4, by J.L. Perlov-Bialobrotn, M.E. Villa-
Fuerte-Casrient, Instituto de Investigaciones en Maté-
riales, Universidad Nacional Autonoma, Mexico 20 D.F.,
and C. Campana, Nicolet XRD Corp., Cupertino, CA 95014,
U.S.A.

Four stable new ternary compounds had been reported in the system Li2O-CaO-SiO2 (A.R. West, J. Am. Chem. Soc.
1978) but no crystal chemistry was done on them. We grew crystals of the Li2SiO4 phase of opti-
mum size for crystal structure analysis. Single crystal diffraction diagrams show the material to be tri-
clinic, P1, a = 10.4505(1)0027, b = 8.3125(0.0023), c =
7.17600±0.0021, β = 77.17300.024, γ = 90.02504.023, γ = 109.249±0.022. The structure was solved using 2166 ob-
served reflections. Full matrix least squares refinement with anisotropic temperature factors was terminated
when R = 0.038 and Rw = 0.041. In this structure the silicon in tetrahedral coordination forms two types of
anions: a (SiO4) unit like a zig-zag chain, and a
(SiO4) unit. The coordination polyhedra of the lithi-
um is also a tetrahedron, but distorted, and joins
together the two silicon anions, forming two-dimensional
layers. The calcium has a distorted cube-like coordina-
tion polyhedron that links the silicon-lithium layers.

08.2-23

08.2-24 COMPOUND FORMATION AND CRYSTAL CHEMISTRY IN
THE SYSTEM Li2O - ZrO2 - SiO2, by Patricia Quintana,
Universidad Nacional Autonoma de Mexico, División de
Estudios de Posgrado, Facultad de Quimica, Ciudad
Universitaria, Mexico 20 D.F., Mexico and Anthony R.
West, Chemistry Dept., Aberdeen University, Menton Walk,
Old Aberdeen, Scotland, Great Britain.

The new ternary compound Li2ZrSi6O15 has been found in the system
Li2O - ZrO2 - SiO2, has a monoclinic unit cell of
a = 11.121(6), b = 10.146(6), c = 11.235(7) Å,
β = 100.26(5)° and space group P21/n. Its crystal
structure appears to be closely related to that of Zekt-
zerite, Li2HfZr2Si11. In the system Li2O - ZrO2
ine lithium zirconate phases have been prepared, five of which are new. One of the
new phases is a high temperature polymorph of Li2ZrO3
and the others are metastable phases. The thermal
behaviour and reaction pathways of formation of the new
phases were studied and their X-ray powder patterns are
reported.

08.2-25 CRYSTAL STRUCTURES OF SOME METAL SACCAR-
INATO-HEREDS, by G. Jovanovski and B. Kamenar, Faculty of
Science, University of Skopje and Faculty of
Science, University of Zagreb, P.O. Box 153,
41001 Zagreb, Yugoslavia.

The crystal structure of sodium saccharinato 2/3 hydrated (1), magnesium disaccharinato heptahydra-
te (2), tetraaquadisaccharinatoanganese(II) di-
hydrate (3), and disaccharinatomercury(II) (4) have been examined by X-ray analysis based on
the intensity data collected on an automatic dif-
fractometer. In structure (1) two Na+ ions have
C.N. six being surrounded by O atoms from water
molecules, CO and SO4 groups from sacchari-
nates, the third Na+ ion has also C.N. six but
realized by five O atoms from the same groups and
by one saccharinato N atom. The Na to O distances
range from 2.30 to 2.42 Å. In structure (2) a disacchari-
notered ion is octahedrally surrounded by five O atoms from wa-
ter molecules and one O atom from CO group. The
Mg to O distances range from 2.05 to 2.11.3 Å. In
(3) Na+ atom is in the centre of symmetry and has
octahedral coordination being bonded to four wa-
ter-oxygen atoms and two saccharinato-nitrogen
atoms. The Mn-O distances are 2.16.2 (2x) and
221.9 (2x), while Mn-N amounts to 228.1 μ (2x).
In the unit cell of (4) there are two independent
molecules, both with digonal characteristic coordi-
nation of Mg atom. In one the Mg-O bond len-
ths are 203.5, 205.0 Å, while in the other
202.9 and 205.8 Å, respectively. The Mg-N angles
are 167.0° and 175.6°, respectively. In (1), (2) and (3) water molecules participate in hydro-
gen bonding with saccharinate ions. The sacchari-
nate ions are planar with bond lengths and angles
within expected values. The structures have been
refined to R values of (1) 0.039, (2) 0.038,
(3) 0.028 and (4) 0.062.

08.2-26 MERCURY(II) COMPOUNDS WITH HIGH COORDI-
NATION NUMBERS, by K. Aurivillius and C. Stilstadste,
Inorganic Chemistry, Chemical Center, University of Lund, P.O. Box 740, S-220 07 Lund, Sweden.

In mercury(II) compounds two-coordination is prevalent. In the coordination to O, Hg is in most cases linearly
or almost linearly bonded at the short distances 2.0-2.2 Å. There are, however, often 3-5 more ligands at 2.4-2.9 Å,
implying considerable weaker interactions. Four- and
six-coordination for Hg(II) are rather unusual and coor-
dination numbers higher than six have so far been re-
ported only for K3[\(\text{Hg(N}_0\text{}_2\text{)}_4\text{]NO}_3\text{]} (Hall & Holland, Inorg.
Nucl. Chem. Lett. (1972) 8, 809, containing [\(\text{Hg(NO}_0\text{)}_2\text{]}^2\text{] ions. The eight oxygen atoms of the four nitrite groups form a
highly distorted square antiprism around Hg with Hg-O
bond lengths of 2.39-2.57 Å; the average value is 2.48 Å.
Eight-coordinated Hg has now also been found in the two
Hg(II) bromates [\(\text{Hg(BrO}_3\text{)}_2\text{]}_2\text{] and K\(\text{Hg(BrO}_3\text{)}_2\text{]}_2\text{] (Fig. 1).}
A preliminary X-ray study of \(\text{Hg(BrO}_3\text{)}_2\text{]}_2\text{] has shown that
Hg is bonded to two water molecules [Hg-Ow 2.35-2.34 Å]
and four bromate groups [Hg-O 2.62-2.72 Å (Fig. 1)] by
the average Hg-O bond being 2.48 Å. A neutron diffraction
study is planned and the result will be presented at
the congress.

In [\(\text{K}_3\text{Hg(BrO}_3\text{)}_2\text{]}_2\text{] the eight-coordination for Hg(II)
is obtained by bonds to two nitrate [Hg-O 2.52-2.59 Å]
and four bromate groups [Hg-O 4x2.43 Å (Fig. 1)] with
an average Hg-Bond length of 2.50 Å.