C-196

08.5-07 STRUCTURE AND MAGNETIC PROPERTIES OF ALKALICHALCOGENOFERRATES.

By <u>W. Bronger</u> and P. Müller Institut für Anorganische Chemie, RWTH Aachen (F.R.G.)

Ternary ferrates of general composition $\ensuremath{\mathtt{AFeX}}_2$ and A_3 FeX₃ (A \triangleq alkali metal; X \triangleq S or Se) have been prepared by fusion reactions: CsFeS2 Na₃FeS3 KFeS₂ RbFeS2 KFeSe₂ RbFeSe₂ CsFeSe₂ Na₃FeSe3 X-ray investigations on single crystals revealed their structures. They are characterized by frameworks of edge-sharing tetrahedra, consisting of S- or Seatoms, centered by iron-atoms, which build up chains in the case of AFeX, compounds and isolated doubletetrahedra in the case of ${\rm A_3FeX_3-compounds}.$ Susceptibility measurements and the determination of the spin structures by neutron diffraction show - dependent on the ligand field parameters - the existence of low spin states of the iron atoms in their tetrahedral environment. This phenomenon has not been observed up to now (Angew. Chemie (1981) <u>93</u>, 12).