has square pyramidal coordination about Te (apical phenyl, 4 basal chlorines). This shows only long intermolecular non-directed Te-Cl contacts. In (4) a secondary Te---Cl bond occurs ($3.68 A^{\circ}$), trans to a phenyl group. Both (1) and (2) have complex
arrangements of Te---0 interactions around the vacant position of the trigonal bipyramid (Te---0 3.1-3.35A in (1)). These are illustrated in the diagram showing the molecular structure of (1).

09.3-18 THE CRYSTAL STRUCTURE OF TRIS-(4.7.9-TRIMERHYLIMDENYL)THORIUM CHLORIDE. By M.R. Spirlet, Laboratoire de Physique Expérimentale, Université de Liège au Sart Tilman, B. 4000 , Liège, Belgium, J. Rebiant, Commission of the European Communities, Joint Research Centre, Karlsruhe Establishment, European Institute for Pransuranium Elements, Postfach 2266, D-7500, Karlsruhe, F.R.G.
and J. Coffart, Institut de Radiochimie, Université de Lièse au Sart Tilman, B. 4000 , Liège, Belgium.

Within the rield of coordination chemistry of the actinide elements, the x-ray crystal structure analysis of the title compound was undertaken to clarify the role of the thorium atom in an environnement of five-and six membered conjugated ring systems. Th ($\left.\mathrm{C}_{12} \mathrm{H}_{13}\right)_{3} \mathrm{CL}$ crystallizes in space group $\mathrm{P}_{1} / \mathrm{c}$ with cell dimensions $a=9.787(2), b=16.565(2)$, $c=18.913(2) \stackrel{\circ}{\mathrm{A}}, \beta=100.96(1)^{\circ}$ and
pealcd $=1,632 \mathrm{~g} \mathrm{~cm}^{-3}$ for $Z=4$. Intensities of 5451 independent reflections were measured with an ENRAF-NONIUS CAD4 diffractometer using MoKa radiation. The structure was solved by direct method. Full-matrix least-squares refinement, on 3792 reflections for which $I \geqslant 3 \sigma$ (I), with all atoms treated anisotropically, except H atoms gave a conventional R factor of 0,03. Coordination about the thorium atom is a slightly distorded tetrahedron: The tho-
rium atom is bonded to the chlorine atom, with a Th-Cl bond length of $2.665(1) \stackrel{\circ}{A}$, and to the carbon atoms of each five-memberedring of the three indenyl moieties, with Th-C distances
ranging from $2.720(5)$ A to $2.976(5) \mathrm{A}$. The character of the metal-1igend bonding will be discussed and compared with that found in similar organoactinides and-lanthanides compounds.

09.4-01 A STRUCTURAL COMPARISON BETWEEN FOUR ALKALImetal dithiocarbamate hydrates. By I. Ymén. Inorganic Chomistry, Chemical Center, University of Lund, P.O.B. 740, S-220 07 Lund, Sweden.

The crystal structures of metal-dithiocarbamate complexes have been extensively studied during the past $10-$ 20 years. So far, however, only two alkali-metal dithiocarbamate structures have been published; $\mathrm{NaS}_{2} \mathrm{CN}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}$. $3 \mathrm{H}_{2} \mathrm{O}$ (Colapietro, Domenicano and Vaciago, Chem. Comm. (1968) 572-573) and $\mathrm{NaS}_{2} \mathrm{CN}\left(\mathrm{CH}_{2}\right)_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (Albertsson, Oskarsson, Ståhi, Svensson and Y̌mén, Acta Cryst. (1980) B36, 3072-3078). These compounds provide information on the geometry of the dithiocarbamate ligand in structures with small metal-ligand interactions. $\mathrm{NaS}_{2} \mathrm{CN}\left(\mathrm{CH}_{2}\right)_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ has also been refined using neutron data collected at 295 K to an R-value of 0.069 . The heavy atom structure is almost identical to the X-ray structure.
The crystal structures of $\mathrm{NaS}_{2} \mathrm{CN}\left(\mathrm{CH}_{3}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (Monocinic, $P 2_{1} / a, a=11.981(1), b=5.871(2), c=12.878(1) \AA, \beta=$ $\left.113.62(1)^{\circ}, \bar{V}=829.9 \AA, D_{1}=1.434 \mathrm{~g} \cdot \mathrm{~cm}, M_{r}=179.24\right)$ and $\mathrm{LiS}_{2} \mathrm{CN}\left(\mathrm{CH}_{2}\right)_{4} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ (Monocilinic, $P 2_{1} / n, Z=4, a=$ $10.279(1), b=9.989(3), C=11.291(1) \AA, B=93.03(1)^{\circ}$, $V=1157.8 \AA, D_{x}=1.292, D_{m}($ flotation $)=1.304 \mathrm{~g} \cdot \mathrm{~cm}$, $M_{p}=225.25$) have now been determined from X-ray intensities and refined to $R=0.034$ and 0.032 respectively. The first compound is very similar to $\mathrm{NaS}_{2} \mathrm{CN}\left(\mathrm{CH}_{2}\right)_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ while the other consists of $\mathrm{Li}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}^{+}$tetranedra and $\mathrm{S}_{2} \mathrm{CN}\left(\mathrm{CH}_{2}\right)_{4}^{-}$units kept together by $0-\mathrm{H} \cdot \mathrm{S}$ hydrogen bonds. The four alkali-metal dithiocarbamte hydrates so far investigated will be compared. The discussion will include geometric features, thermal motion and $0-H \cdots S$ hydrogen bonds.

