09.4-12 THE CRYSTAL STRUCTURE OF TETRA-N-BUTYLAMMONIUM TEPRABROMOAURATE III. Jeffrey P. Johnson; , Physics Dept., Northern I11. U., Deka1b, IL, 60115, USA, H. Brigitte Krause, Northern I11. U., DeKa1b, IL, 60115, USA, and Elisabeth G. Sherry, Chemistry Division, Argonne Nat. Lab., Argonne, IL, 60439, USA.

Tetra-n-butylamonium tetrabromoaurate III,
$\mathrm{C}_{16} \mathrm{H}_{36} \mathrm{AuBr}_{4} \mathrm{~N}$ or $\left[\mathrm{Bu}_{4} \mathrm{~N}\right]^{+}\left[\mathrm{AuBr}_{4}\right]^{-}$crystallizes tetragonally with $a=12.135(5) \AA$ and $c=8.508(4) \AA, \frac{c}{a}=0.7011$. Two formula units are contained in a unit cell of volume $\mathrm{U}=$ $1255 \mathrm{~A}^{3}$. The probable space group is $\mathrm{P} \overrightarrow{4}$ with atom parameters almost satisfying the higher symmetry of $P 4 / n$. The structure was refined in space group $\mathrm{P} 4 / \mathrm{n}$. It consists of discrete planar $\left[\mathrm{AuBr}_{4}\right]^{-}$ions which lie on fourfold axes and $\left[\mathrm{Bu}_{4} \mathrm{~N}\right]^{+}$ions which have $\overline{4}$ symmetry. The $\left[\mathrm{Bu}_{4} \mathrm{~N}\right]^{+}$
fons are disordered with two distinct orientations for the carbon chains which are approximately mirror images of one another. The $\mathrm{Au}-\mathrm{Br}$ bond distance is 2.404 (1) A, the $\mathrm{N}-\mathrm{C}$ distance is $1.56(2)_{\mathrm{O}}^{\mathrm{A}} \mathrm{A}$, and the $\mathrm{C}-\mathrm{C}$ distances vary between 1.42 A and $1.56 \mathrm{~A}^{\circ}$. The final R -value for 1450 reflections was 0.092 .
*now Physics Dept., Florida State U., Tallahassee, FL, 32301, USA.

$$
[001] \text { projection of }\left[\mathrm{Bu}_{4} \mathrm{~N}^{+}\left[\mathrm{AuBr}_{4}\right]^{-}\right.
$$

09.4-13 THE STRUCTURE OF A FOUR COORDINATE GOLD(I) COMPLEX: $\quad\left[\mathrm{Au}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{SCN}\right]$. By J. A. Muir, M. M. Muir and S. Arias, Departments of Physics and Chemistry, University of Puerto Rico, Rio Piedras, PR 00931 USA, and C. F. Campana and S. K. Dwight, Nicolet XRD Corp., 10061 Bubb Road, Cupertino, CA 95014 USA.

Crystals of several colorless gold complexes have been obtained by reacting Au(PPh_{7}) SCN with an excess of $\left(\mathrm{PPh}_{3}\right)$ in benzene solution. [$\left.\mathrm{Au}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{SCN}\right]$ is the first of these complexes whose crystal structure has been determined. It crystallizes in the space group $P 2_{1} / n$, with $\mathrm{a}=15.806(6), \mathrm{b}=22.110(9), \mathrm{c}=15.774(4) \mathrm{A},-3$ $\beta=94.68(4)^{\circ}, Z=4, D_{C}=1.44$ and $D_{m}=1.46(1) \mathrm{g} \mathrm{cm}^{-3}$. The structure was solved using heavy atom methods, and refined with SHELXTL. For 4599 observed structure amplitudes, using data up to $2 \theta=45^{\circ}$, the final residuals were $\mathrm{R}=0.066$ and $\mathrm{wR}=0.062$. $\left(\mathrm{MoK}_{\alpha}\right)$
The coordination geometry about the gold is four-fold. The gold-phosphine geonetry is nearly trigonal planar, with the gold atom only 0.38 A out of the least-squares plane through the P atoms. Unlike the somewhat similar $\left[\mathrm{Au}\left(\mathrm{PPh}_{3}\right)_{3}\right]+\left[\mathrm{B}_{9} \mathrm{H}_{12} \mathrm{~S}^{-}\right.$, however, the SCN^{-}ligand is coordinated to 92^{S} the gold, so the resulting structure is intermediate between trigonal pyramidal and tetrahedral. The Au-P and Au-S distances are exceptionally long: The Au-P range from 2.384 (4) to $2.411(4) \AA$, while the Au-S distance is 2.787(4) A. In $\left[\mathrm{Au}\left(\mathrm{PPh}_{3}\right)_{3}\right]^{+}\left[\mathrm{B}_{9} \mathrm{H}_{12} \mathrm{~S}\right]$, by comparison, the $\mathrm{Au}-\mathrm{P}$ distances are less, ranging from 2.373(14) to 2.389(6), while the Au atom is 0.20 \& out of the least-squares plane through the P atoms.

$09.4-14$

THE CRYSTAL STRUCTURES OF TETRAPYRIDINE COPPER(I) PERCHLORATE AND TETRAPYRIDINE SILVER(I) PERCHLORATE AT 250 K .
By K. Nilsson and A. Oskarsson, Inorg. Chem. 1, Chemical Center, Box 740, 5-220 07 Lund 7, Sweden.

This study has been carried out as part of a research programe on structural and themodynamic features of complexes formed in pyridine.

In a preliminary communication Lewin, Michl, Ganis, Lepore and Avitabile (Chem. Comm., 1971, 1400) reported the crystal structure of $\mathrm{Cu}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{4} \mathrm{ClO}_{4}$. We have redetermined that structure and extended the measurements to the silver_solvate. The compounds are isostructural, space group $I \overline{4}$ with $Z=2$ and $a=12.471$ (3), $c=6.894$ (2) and $a=12.874(1), c=6.748(4) \AA$ for the Cu and Ag compound, respectively.

Intensity data were collected at 250 K on a CAD-4 diffractometer using Mo-radiation. The refinements converged to $\mathrm{R}=0.042$ (Cu) and $\mathrm{R}=0.026$ (Ag).

The structure is composed of discrete $\mathrm{M}_{\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{4}^{+}}^{+}$and ClO_{4}^{-}ions. The coordination geometry is tetrahedral with metal-nitrogen distances 2.047 (4) (Cu) and $2.322(3) \AA$ (Ag).

The bond distances in these and other copper(I) and silver(I) compounds will be compared. For a given coordination figure, the difference between the distances $\mathrm{Ag}-\mathrm{X}$ and $\mathrm{Cu}-\mathrm{X}$ decreases markedly as X becomes softer.

