

Molecular structure of cation (I)
$\left(\right.$ diphosph $\left.=\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}\right)$.

The $\left[R h_{2}(\mathrm{TMB})_{4} \mathrm{CI}_{2}\right]\left(\mathrm{PF}_{6}\right)_{2}$ crystals are orthorhombic,
space group Pben (No. 60), $a=13.845, b=24.773$, $c=$ 17.068 $\mathrm{A}, \mathrm{Z}=4$. The structure was solved by a combination of Patterson and direct methods. Convergence was obtained in a full-matrix least-squares refinement (anisotropic Rh, Cl, C, N, P, F, constraineत isotropic $\mathrm{H}, \mathrm{R}=0.12, \mathrm{R}_{\mathrm{V}}=0.078,1903$ reflections with $F>1.5 \sigma(F))$ with a partially disordered ligand molecule. The bonded th atoms are related by a twofold axis, and the Rh - Rh vector is closely aligned with the c axis. Thus the orientation of the molecule is suitable for a single-crystal spectroscopic study of the formal $\mathrm{Rh}-\mathrm{Rh}$ single bond ($\mathrm{Rh}-\mathrm{Rh}, 2.77 \mathrm{~A}$, compared to 3.26 A in the corresponding Rh (I) complex.)
$\left[\mathrm{Ir}_{2}(\mathrm{TMP})_{4} \mathrm{I}_{2}\right]\left(\mathrm{BPh}_{4}\right)_{2}$ crystallizes in the orthorhombic
space group Pcon (No. 56), $a=15.141, b=28.104, c=23.877$ A, $Z=4$. Although 9019 unique reflections were measured many of the intensities were low, and the quality of fit is not as good as in the Rh structure. The Ir and I atoms occupy special positions ($1 / 41 / 4 \underline{z}$). Serious questions remain concerning possible disorder within the molecule, but the bonding arrangement, and the Ir-Ir distance of 2.82 A , are confirmed.

We are indebted to the U.S. and Swiss Mational Science Foundations for support of this work, and to Jack D. Dunitz, K.N. Truehlood, Paul Seiler, Richard E. Marsh, Harry B. Gray, and Carolyn Knobler for assistance and advice.
09.4-45 MIXED VALENCE COMPLEXES OF PLATINUM. THE CRYSTAL STRUCTURES OF [Ft(Meen) $]\left[P t B r_{2}\right.$ (Meen) $\left.)_{2}\right]\left(\mathrm{ClO}_{4}\right)_{4} \mathrm{AND}\left[\mathrm{Pt}(\mathrm{tn})_{2}\right]\left[\mathrm{PtI}_{2}(\mathrm{tn})_{2}\right]$ $\left(\mathrm{ClO}_{4}\right)_{4}^{2}$. Bernd Keppler and Barbara Müller, Anorgañisch-Chemisches Institut der Universität, 69 Heidelberg 1, BRD. Mario Cannas and Giaime Marongiu, Istituto Chimico dell'Universitã, $\overline{09100}$ Cagliari, Italy.
We have performed single crystal diffraction studies of the title compounds mainly to determine the geometry of the linear chains showing alternating $P t(I I)$ and $P t(I V)$ atoms. Both compounds occur as coloured, lustrous metallic, fine needles. [Pt (Meen) 2$]\left[\mathrm{PtBr}_{2}(\text { Meen })_{2}\right]\left(\mathrm{ClO}_{4}\right)_{4}$ (Meen = 1,2-diaminopropane) is orthorhombic (Pc2a) with $a=7.74(1), b=11.14(2), c=$ 17.42(3) \AA and $z=2 ;$ a total of 1800 data were collected to $2 \theta=52^{\circ}$. [Pt $\left.(\mathrm{tn})_{2}\right]\left[\mathrm{PtI}_{2}(\mathrm{tn})_{2}\right]$ $\left(\mathrm{ClO}_{4}\right)_{4}(\operatorname{tn}=1,3$-diaminopropane $)$ is monoclinic (P2) with $a=10.29(2), b=11.33(2), c=8.62$
(1) $A_{F} \beta=125.7^{\circ}, Z=1$. A total of 1700 data were collected. Most crystals are twinned along [010] simulating a pseudo-orthorhombic symmetry with a centered cell very close to that reported for Br and Cl derivatives.
Pt (Meen) 2 and $P t(t n)_{2}$ groups in the crystals of the two compounds stack with the molecular plane perpendicular to the b axis, which results in a Iinear Pt(II) . . $\mathrm{X}-\mathrm{Pt}(\mathrm{IV})-\mathrm{X} \cdot .$. chain. At this stage of refinement $(\mathrm{R} \approx .10)$ the $\mathrm{Pt}(\mathrm{II})-\mathrm{Pt}(\mathrm{IV})$ spacings in each structure are equal ($\frac{4}{2} b$) although not required crystallographically. The đifference in metal-metal separation between the two compounds is due to corresponding differences in the direct $M-X$ bonds ($\mathrm{Pt}-\mathrm{Br}=2.52 \AA$; $\mathrm{Pt}-\mathrm{I}$ $=2.66 \mathrm{R})$; the lengths of the charge-transfer Pt...X are rather unaffected.

