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U.X-04 PROFILE FUNCTIONS IN RIETVELD ANALYSIS. 
By R.A. Young and D.B. \~iles, Georgia Institute of 
Technology, Atlanta, Georgia 30332. 
Some structural results obtained in Rietveld analyses 
can depend significantly on the choice of reflection 
profile function used. Which profile function is the 
most appropriate depends on both the instrument and the 
specimen. While a Gaussian representation is quite 
suitable for energy-dispersive data taken with synchro­
tron radiation (Glazer, Hidaka & Bordas, 1978, ~­
Cryst., 11, 165-172) and reasonably though not entirely 
suitable for neutron angle-dispersive data (Suortti, 
1980, NBS Special Publ. 5,67, l-20), it is often dis­
tinctly not the best choice for use with Guinier camera 
data (~lalmros & Thomas 1977, J. Appl. Cryst., lQ, 7-ll) 
nor vnth x-ray 8-26 diffractometer data, to which-the 
remaining comments specifically apply. No known choice 
of profile function is ide~. The relative unsatisfac­
toriness of various functions can be assessed, in part, 
by comparisons both of various R values and of obs - calc 
pattern-difference plots for Rietveld refinements using 
the different profile functions with the same data. 
RBragg is mainly sensitive to the fit of the crystal 
structural model; Rweighted-profile and the difference 
plots are also sensitive to the disparities between the 
calculated and observed profile shapes and background 
functions. The profile functions most explored experi­
mentally in Rietveld analysis are the Gaussian (G) for 
which I(x) ~ exp (-k 2 x2 ) and the Lorentzian-related 
functions, I(x) ~ (l + k2 x2 )-n, wherein the function is 
a Lorentzian (L) if n=l, a modified Lorentzian (ML) if 
n=2, and an "intermediate Lorentzian" (IL) if n=l.5. 
Also being explored are a pseudo-Voigt function (Wertheim, 
Butler, and Buchanan, 1974, Rev. Sci. Instrum., ~.\[, ll, 
1369-1371) used by Hindeleh and Johnson (1978, Polymer, 
k£, 27-32) and the Pearson VII function used by Immirzi 
(1980, Gazz. Chim Ital., llO, 381-387). Tests were 
carried out with these si)i"'f'unctions (including an 
asymmetry factor) and X-ray powder patterns hav-
ing differing degrees of profile broadening. The 
isotropic temperature factors were especially strongly 
affected (>5cr) by the choice of profile function v1hile 
b~ckground and site occupancy parameters were only mal'­
glnally affected. Not significantly affected were 
positional and lattice parameters. The G function 
generally gave the distinctly poorest results of the 
six; which function was (often marginally) "best" 
depended on the reflection profile breadths and on 
which criterion (e.g., R8 or Rwpl was used. 
Other profile functions which have been successfully 
used or suggested may yield better results when similar 
comparisons are made. These include a polynomial func­
tion used by Baerlocher & Hepp, (1980, NBS Special 
Publ. ~z, 165), the Voigt function examined by 
Langford (19?8, J. Appl. Cryst., u, 10-14) and by Suortti, 
Ahtee & Unon1us (1978, U. Helsinki Report Series in 
Physics HU-P, 1~~, l6pp) and the Edgeworth series 
suggested by \~ilson (1973, J. Appl. Cryst., §, 230-237). 
The Edgeworth series is especially interesting be-
cause it has a physical rationale based on the central 
1 imit theorem and can accommodate s kevmess and kurtosis. 
Various investigators' current assessments of the use­
fulness of these functions for Rietveld analyses are 
reviewed. 
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U.X-05 ESTULJ\.TION OF UNCERTAINTY IN STRUCTURE 
REFINEfffiNT FROM POWDER DATA. E. Prince, National 
Measurement Laboratory, National Bureau of Standards, 
Washington, DC 20234, U. S. A. 
The estimation of uncertainty requires consideration of 
the related, but nevertheless distinct, questions of 
statistical precision and of possible bias. Experimen­
tal observations may usually be assumed to be uncorre­
lated, because any one observation is not influenced by 
the fact that other observations have been made of the 
same or different quantities at the same or different 
times. This being the case, if the model is consistent 
,,lith the data, each term consisting of the squared dif­
ference bet1ceen observed and predicted values, expres­
sed as a fraction of the variance of the observation, 
contributes, on the average, (n-p)/n to the sum. Here n 
is the total number of data points, and p is the number 
of adjusted parameters in the model. 
In the Rietveld [J. Appl. Cryst. 2, 65 (1969)] method 
of po\vder., refinement the observations are the intensi­
ties at specific ·points in a pmvder pattern and are 
assumed to have the Poisson distribution characteristic 
of random events. The model is a set of peakE 1-Jith an 
assumed shape, whose integrated areas are fun· .tions of 
the crystallographic parameters. Denotin:; the Heighted 
sum of squared residuals by s2, s2 :t (n-p) if the 
model fits the data, and, provided the numbers of 
counts in the individual data points are large enough, 
has the x2 distribution \·lith (n-p) degrees of freedom. 
Hypothesis tests based on the x2 distribution may be 
used to assess the adequacy of the model. If the tests 
shmv the model to fit the data, and the model has 
allmoJed all important parameters--;:() vary, then the in­
verse of the Hessian matrix is the variance-covariance 
matrix for the parameters and the standard deviations 
of the individual parameters are the square roots of· 
its diagonal elements. 
The e. s. d. s are measures of precision, the minimum 
l"idth of an interval 1dthin l"hich the "true" value of 
the parameter may confidently be assumed to lie. For 
good precision to translate into corresponding accuracy 
it is required that the model be free of bias, 1·1hich 
arises loJhen the model implicitly assumes an incorrect 
value for some parameter that is correlated >lith the 
ones in which tve are interested. For example, an incor­
rect loJavelength l"ill ohviously bias the values of the 
cell constants, l"hile neglect of the attenuation of the 
beam in the sample l"ill bias all temperature factors. 
fu< incorrect peak-shape function also tends to bias 
temperature factors, as does an incorrect background 
level. Although the peak shapes in neutron diffraction 
are usually Gaussian, they are not always. Analyses 
should therefore include a study of the shapes of 
resolved peaks. If the peak shape function is satis­
factory, background may be included as a refineable 
parameter and estimated even in the absence of points 
in a broad range that contain no contribution from a 
Bragg reflection. 
D-'O or more models that appear to be <dthin the range 
of adequate fit may be compared l"ith one another by use 
of statistical tests, such as Hamilton's R-factor ratio 
test, based on the F distribution. If, ho~oJever, statis­
tical tests indicate that the model is not adequate, 
there must be at least one missing parameter, and both 
precision and bias depend on the unknown correlation 
bet~oJeen this parameter and the refined ones. Thus the 
confidence interval cannot be determined by means of 
statistical techniques. 
If the po~oJder pattern is loJell resolved, and if the 
criteria for adequate fit are satisfied, substantially 
identical results may be obtained by using integrated 
intensities, instead of the intensities at individual 
points, as the data. HmoJever if peaks are not resolved, 
their integrated intensities are correlated, and the 
loJeight matrix is not diagonal. The estimation of uncer­
tainty in this case is hampered by a conceptual dif­
ficulty in defining the rank of a non-singular but 
possibly ill-conditioned matrLx. 


