The crystal structure of lithium hydrogen oxydiacetate, LiHO(CH₂COO)₂, has been determined from X-ray data (Herbertsson, Acta Cryst. (1976) B32, 238). The crystals are monoclinic, space group P2₁/n, with a = 7.259(2), b = 5.468(1), c = 14.256(2) Å, β = 91.84(2)^O. The structure consists of layers of infinite chains of hydrogen-bonded O(CH₂COO⁻)₂ ions held together by Li⁺ ions. The oxydiacetate residue forms a bidentate chelate with the Li⁺ ion, which results in a fairly large conformational change in the two halves of the ligand.

In order to study the electron distribution around the ether oxygen and the atoms participating in the chelate a recollection of the X-ray data was made_using MoK\alpha radiation with $\sin \theta/\lambda < 1.15 \text{ }\text{\AA}^-$. Neutron diffraction data were collected at the Swedish R2 reactor at a wavelength of 1.210 Å with $\sin \theta/\lambda < 0.69 \text{ }\text{\AA}^{-1}$.

Details of the structure and X-N maps showing the features of the electron distribution will be shown.