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14.1-01 A UNIFIED DERIVATION FOR St~ALL ANGLE ELASTIC 
SCATTERING OF HIGH ENERGY ELECTRONS. By R. Portier and 
D. Gratiast, C. E.C.t~./CNRS, 15 rue G. Urbain, 94400-
Vitry, FRANCE (t Present address: Department of 
Materials Science & ~1ineral Engineering, University of 
California, Berkeley, CA 94720, USA.) 

Numerous methods have been derived for the calculation 
of dynamical elastic scattering of high energy electrons 
in a crystal. Although these methods often take quite 
different forms they all lead to similar results. The 
present investigation proposes a unified derivation 
which shows that usual methods correspond to different, 
but equivalent, ways of solving the fundamental equa­
tion (l) numerically. The basic point is that the small 
angle scattering approximation leads to a time ~ependent 
like Schrtidinger equation and therefore to an evolution 
operator U(t,to) solution of 

(l) iitu(t,to) = (W + V(t)) U(t,to) 

where t represents the coordinate along the propagation 
direction. If the potential V(t) may be considered as 
constant along the propagation direction, then the 
solution of (l) is simply 

U(t,to) = exp [-i(H 0 + V)(t-to)] 
which is the usual scattering matrix expression. If 
H0 << V, then U(t,to) has the form 

U(t,to) = exp [-if~o V(c)dT], 
corresponding to the phase grating approximation. If 
V is not independent of t, the U may be expanded in a 
time dependent perturbation series corresponding to the 
diffraction optic approach, etc. This unified approach, 
based on a quantum mechanical formulation is a conven­
ient method for describing small angle elastic scat­
tering, and leads to possibly new techniques for ap­
proximate calculations. 

14.1-02 DIFFRACTION CONTRAST RETAINED BY IN~h~STI-
CALLY SCATTERED FAST ELECTRONS. By C.J. Rossouw and 
M.J. Whelan, Departme.."'lt of Hetallurgy & Science of 
Materials, University of Oxford, U.K. 

A theory for phonon scattering of fast electrons (Rez, 
Humphreys and w"'helan, Phil. Hag. 35 (1977) 81) has been 
developed to predict the plasmon and K-loss distribution 
of 80kV electrons in diffraction patterns formed from 
single crystals. The formation of Kikuchi lines from 
these different electronic excitations is da~onstrated. 
The results have implications for the microanalysis of 
light elements in crystalline materials by electron 
energy loss techniques. Here the ratio of the low 
energy loss to characteristic energy loss intensity is 
used together with the relevant cross-section to predict 
the number of atoms giving rise to the characteristic 
loss. Energy loss ru;alysis based on the theory of 
characteristic losses from sL~gle atoms may yield 
inaccurate results due to the non-symmetrical angular 
distribution of electrons scattered with energy loss in 
crystals. Errors may be compolli;ded under diffraction 
conditions where the elastic be~u displays strong 
extinction since fL~ite apertures in the diffraction 
plane will still allow a considerable loss signal to be 
recorded (Rossouw and l'"'helan, to be published in 
Ultramicroscopy). Calculations which show varying 
diffraction contrast L~ the plasmon loss befuu when an 
aperture is displaced L~ differQit directions from 
diffracted beams are in good agreQuent with experim~Lt. 
In weak-beam techniques, inelastic scattering from 
neighbouring beruus in a systematic row will raise back­
ground but not interfere with diffraction contrast. 

14.1-03 POINT GROUP DETERMINATION FROM SYM­
METRICAL f.1ANY-BEAM CBED PATTERNS. By 
M. Tanaka and R. Saito, Physics Department, 
Faculty of Science, Tohoku University, 980 
Sendai, Japan. 

The point group determination from CBED pat­
terns developed by Buxton et al. (Philos. 
Trans. R. Soc. London A, (1976) 281 171) is 
based on the symmetries appearing-In the zone 
axis pattern and patterns taken at the Bragg 
settings of +G and -G reflections. Tinnappel 
(Ph. D. Thesis, Technical Univ., Berlin, 1975) 
considered the sywmetries appearing in the 
sywmetrical many-beam (SMB) CBED.patterns, in 
contrast with Buxton et al. who considered 
the two-beam case. It is worth-while making 
clear systematically the relations between 
symmetries appearing in SMB patterns and the 
diffraction groups. The relations can be 
derived by the graphical method for all dif­
fraction groups. However, five groups l, lR, 
2, 2R and 21R are left out of consideration, 
since the possible three-beam excitation in 
these groups gives no more information than 
the two-beam case of Buxton. As an example, 
the sy~metry table of the pattern and its il­
lustration for the diffraction group 6mRmR is 
shown here. The zone-axis pattern is rather 
suitable for finding the two-dimensional sym­
metry elements. The SMB pattern is useful for 
finding simultaneously plural number of the 
three-dimensional symw.etry elements. The two­
dimensional rotational sywmetry elements ex­
hibit their characteristic rather in a pair of 
SMB patterns taken at different Bragg set­
tings. In sr.rn method the existence of the 
inversion center can be found from one 
photograph, and many diffraction groups can be 
determined from one photograph, whereas two or 
three photographs are required in 
Buxton's theory. For example the diffraction 
groups having 4-fold axis are distinguished frcm 
each other from a S~ffi photograph, whereas two 
photographs are necessary for distinguishing· 
the pairs (4, 41R) and (4mm, 4mm1Rl by 
Buxton's method. By using the present method 
originated with Tinnappel together with 
Buxton's method, the point group determination 
can be carried out more easily and quickly. 
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