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17.1-0l PATTERSON SEARCH AND DIRECT METHODS -
A CoMBINED APPROACH TO STRUCTURE SoLUTION 
Ernst Egert, William B.T. Cruse and Olga Kermard, 
University Chemical Laboratory, Cambridge CB2 lEW, U.K. 

Although direct methods have proved very powerful in 
solving difficult crystal structures, some problems 
resist even the most sophisticated attenpts. In these 
cases, a combLDation of Patterson search techniques 
and direct methods caD lead to a rapid structur~ 
solution, if part of the chemical structure is kna.vn. We 
have combined t.fle Patterson search program of Hornstra 
(l) with the tangent e'>.-par1sion of Karle & Karle (2) to 
solve two structures, which could not be solved by 
direct methods alone, usi11g chemically sitnilar st.ructures 
as a starting model. In one ideal case, the structure of 
a bridged steroid with 47 atoms was obtained by success­
fully searching for a 25 atom fragment of a diastereo­
isomer. In a second problem, a terpene derivative with 
20 atoms was solved using a tetrasubstituted cyclohexane 
ring as model. In bot.l-1 cases, the best solution after 
the Patterson search corresponded to the correct 
position of the fragme~t, although atomic shifts of up 
to 0. 2 5\ were observed durL~g the successive tangent 
expansion wit.l-1 one misplaced atom disappearing. 

This procedure, whic.c'1 is at least as fast as the 
available direct methods program, packages , provides a 
reliable starting po~>t for the successful application 
of the tangent formula. It could have considerable 
potential as a structure solution strategy utilizing 
known chemical structure with G'1e currently available 
stores of atomic coordinates aDd search retrieval 
facilities oontained in the Cambridge Data Base. 
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17.1-02 ON THE INTERPRETATION OF THE PATTER-
SON SYNTHESIS. By P. Enqel, Laboratory of 
Crystallography, University of Berne, Freie­
strasse 3, CH-3012 Berne, Switzerland. 

The phase problem of the crystal structure 
analysis can best be explained in the Patter­
son space. Assuming complete separation in the 
Patterson synthesis it is possible to state two 
theorems about the uniqueness of the crystal 
structure analysis (Engel, Chimia (1979) 33, 
317). -

For small molecular structures the Patterson 
synthesis is separated into finite domains 
which comprise one or several convolution 
molecules. For each domain the convolution 
integral is solved through the calculation of 
the moments (Engel, Z. Kristallogr. (1973) !22r 
4 3 3) . The follm•7ing theorem can be proven 
(Engel, Z. Kristallogr. (1980) _:122,-217): 

Theorem 1: For non-polar space groups the 
crystal structure is uniquely 
determined if the Patterson synthesis 
can be separated in a singular, non­
equivalent way into finite domains. 

Theorem 1 requires that the scattering density 
is concentrated on small molecular domains. 
The empty space between these domains then 
determines uniquely the phases of the struc­
ture amplitudes. In order to calculate the 
phases the H-function can be applied in an 
iterative procedure (Engel, Z. Kristallogr. 
(1981), in press). As a reliable fit of good­
ness the remaining density beh1een the mole-

cular domains can be determined. Under the pre­
mises of the above theorem homometric structu­
res of the first kind occur in polar space 
groups, if the molecule itself is a convolu­
tion of some prime structures. Homometric 
structures of the second kind only occur if 
the overlap of the domains in the Patterson 
synthesis is too excessive. 

In coordination structures with few heavy atoms 
only the interatomic vectors between the heavy 
atoms can often be made out and it is appropri­
ate to assume point atoms. Centrosymmetric 
space groups generate the characteristic vec­
tor set which systematically can be searched 
for (Engel, Z. Kristallogr. (1980) 151, 203). 
The following theorem can be proven(Engel, 
Z. Kristallogr. (1980) _:122, 217): 

Theorem 2: For centrosymmetric space groups 
the set of point atoms is uniquely 
determined if the characteristic 
vector set can be separated in a 
singular, non-equivalent way. 

Different vector sets usually interpenetrate 
the characteristic vector set and therefore 
only a point solution can be obtained. For 
point sets of atoms phases can only be calcu­
lated assuming atomic scattering factors. 
These phases are then determined only within 
the scope of the assumed model. In non-centro­
symmetric structures or if interatomic vectors 
systematically coincide homometric point sets 
of the second kind may occur. 

17.2-01 FORt\lULAS FOR THE CALCULATION OF n-TET 
PHASE INVARIANTS AND EHBEDDED SEHINVARIANTS FOR 
ALL SPACE GROUPS. By Jerome Karle, Laboratory 
for the Structure of Hatter, Naval Research 
Laboratory, Washington, D. C. 20375, U.S.A. 

Formulas have been developed for the computa­
tion of phase invariants of any order that can 
be applied to any space group. On the assump­
tion that decreases in the accuracy with which 
it is possible to compute increasingly higher 
order phase invariants are not so pervasive as 
to preclude significant applicability of this 
theory, certain characteristics are worth men­
tioning. It is readily possible to use these 
formulas to calculate embedded seminvariants 
by making use of special relationships among 
the phases that are characteristic of the 
various space groups. It is not necessary to 
introduce "neighborhood" theory or "representa­
tion theory" in order to determine which of 
the structure factor magnitudes provide the 
strongest contributions to the evaluation of 
the phase invariants. Such information is al­
ready contained in the formulas. There is also 
no need to derive a special joint probability 
distribution for each invariant and each em­
bedding and associated neighborhood since the 
formulas include these matters. The develop­
ment of the theoretical basis for the formulas 
was particularly facilitated by the applica­
tion of the general (not conditional) deter­
minantal form of the joint probability 
distribution (Karle, J. (1978). Proc. Natl~ 
Acad. Sci. USA ~' 2545-2548). 

Questions arise concerning the possible utility 
of formulas derived from joint probability dis-


