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i7 .2-ll A RANDON APPROACH TO CRYSTAL STRUCTURE 
DETERt!INATION. By J. P. Declercq and G. Germain, 
Laboratoire de Chimie Physique et de Cristallographie, 
Universite de Louvain, Louvain-la-Neuve, Belgium, and 
H H 1-loolfson and H viright, Department of Physics, 
University of York, Heslington, York YOl SDD, U K. 

It has been found (Baggio, Hoolfson, Declercq, Germain, 
Acta Cryst. (1978). A34, 883) that triple-phase 
relationships treated-a8 linear equations can be used 
to refine a set of initially random phases, the 70 -
100 refined phases being used as a starting point for 
development by the tangent formula. The least-squares 
method used in refinement is subject to difficulties 
in weighting the equations and problems arising from 
the singularity of the matrix can occur$ Investigations 
of alternative methods of refinement show that the 
method of steepest descents is successful in 
circumventing these difficulties ;;vhilst retaining the 
advantages of the large starting set method. Novel 
approaches are made possible by the easier application 
of weighting schemes and the process is computation
ally economical. Illustrations are sho;;m using out
put generated by the distributed program YZARC ;.;hich 
optionally uses either method of refinement. 

17.2-12 RANTAN - Ri\.l'TDON HULTAN. 
By Yao Jia-xing, Department of Physics, 
University of York, YOl 5DD, England. 
Permanent address: Institute of Biophysics, 
Academia Sinica. Peking China. 

To overcome the disadvantages of a small star
ting set in NULTAN a technique called RANTAN is 
described. A large number of phases are given 
random values associated with low weights and 
then refined, together with reflexions fixing 
origin and enantiomorph, by a weighted tangent 
formula. An initial random phase is not changed 
until a phase estimate is obtained with a new 
weight greater than the initial weight. Then 
the phase is allowed to vary and to follow its 
refinement path. In the present method it is 
possible simultaneously to work with all the 
reflexions and all the relationships ab initio. 
More than 20 structures, which represent a wide 
variety of space groups, structural complexity 
and difficulty, have been successfully solved 
by RANTAN. One example is a difficult unknown 
structure containing 100 atoms in the asym
metric unit with space group PZ1· The first E
rnap, with very good figures of merit, showed 85 
atoms. The experimental results have shown that 
it is possible to use RANTAN to determine more 
complex structures which contain more than 100 
atoms in the asymmetric unit. 
Another auulication of RANTAN is its use with a 
partial st~ucture, like Karle recycling. The 
known phases coming from a partial structure 
are combined with random phases and then RANTAN 
is run as usual. Normally only 10% of a struc
ture is enough to develop it completely. 

17.2-13 ~~GEX - A PROCEDURE FOR PHASE DETERMINATION. 
By S. E. Hull, D. Viterbo, H. H. Hoolfson and 
Zhang Shao-Hui, Department of Physics, University of 
York, Heslington, York YOl SDD, U K. 

This procedure extends and strengthens the PS method 
(Declercq, Germain and Hoolfson, Acta Cryst. (1979)). 
Long one-dimensional magic-integer sequences are used 
to express the phases of from 5 to 20 primary 
reflexions. A new concept of multiple definition of 
secondaries is employed and the error involved in their 
subsequent application in a conventional ~ map is thus 
much reduced. A parameter-shift process, «hich is 
based on one or other of t-:vo functions, is used to 
refine 200 sets of from 40 to 100 phases and a 
number of the best sets of refined phases is selected. 
A facility is available for limited multi-pathway 
phase extension before large-scale phase extension 
by the controlled use of the tangent formula is under
taken. Examples of successful applications of H.~GEX 
are described. · 

17.2-14 STRENCfi'EEl'i""ED TRANSLATION FUNCTIONS: FINDING 
TEE POSITION OF A SK4LL, KNOHN FRAGMENT BY SEARCH METHODS 
IN DIRDIF-FOURIER SPACE. By H.!Vl. Doesburg and P.T. 
Beurskens, Crystallography Laboratory, Toernooiveld, 
6525 ED Ihjmegen, The Netherlands. 

A frequently occurring problem in the determination of 
crystal structures is the positioning of a correctly 
oriented molecular fragment, relative to the symmetry 
elements or relative to another knovm molecular fragment. 
Knowledge of the orientation of a fragment may be avai
lable from: 
- Patterson rotation search techniques. 
- Direct methods, vrhen a recognizable fragment is found 

from an otherwise obscure E map. 
The present translation method is essentially a convolu
tion of a Y~ow~, correctly oriented, 'search' fragment 
with a DIP~IF electron density map 
(Van den Hark, Th.E.!Vl., Prick, P. and Beurskens, P.T. 
Acta Cryst. (1976) A32, 816-821). 
Definitions: p is the electron density of the knowil 

p 
fragment and F (h) are the calculated partial structure p-
raetors. p~ is the electron density Of the UD~Own part 
of the structure and Fr(~) are the corresponding struc-

ture factors obtained by DIRDIF, using the Yillown frag
ment as input. pps is a symmetry related image of pp. 

The translation function is defined as 

Q(q) = JJJ
1 p (r-q) p (r) Vdxdydz 

- xyz=O ps - - r -
From- convolution theory it follo1-rs: 

Q(q) = l L F* (h) F (h) exp -2~i ~·~ 
- V h ps - r -

The maximum of the Q-function gives the position of pps 

relative to p ; from this the position of the symmetry 
element can e~sily be deduced. 
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For instance: in space group P2 1: 
the Q function takes the form 

Q(a) = ~ L L L F*(bkl) F (P~l) (-1)k exp-2rri~.~ 
.: hklp r 

while only one Fourier section (q = x ,O,z ) has to be 
calculated. The shift vector is =~~ q q where ~ is 
the position of the highest pe~~ ill the Q-function~ 

The shift can be applied in reciprocal space, to pro
duce Fourier coefficients for a new s:yill.Illetry - enforced 
electron density map. Examples in various space groups, 
simultaneous location of the fragment relative to all 
symmetry elements, and location of fragments relative 
to each other, w~ll be show~. 
Advantages: automatic, high-speed computer program; no 
Patterson-overlap; for large structures: multisolution' 
techni~ue and application to small or qualitatively bad 
fragments is possible. -
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17.2-15 BREAKING OF PSEUDOSYMMETRY USING DIRECT 
METHODS. By R. Bohme*, Institut fUr Angewandte Physik, 
Lehrstuhl fUr Kristallographie, Universitat Erlangen
Nurnberg, Germany (BRD). 

Let p(x) describe the electron density distribution of 
a structure and F(h) its structure factors. If p(x) sa
tisfies a pseudotranslation ! of index p it is useful to 
divide the set of all reflexions into the set of main and 
the set of superstructure reflexions. The main reflexions 
~(~.!_integer) determine the structure of the subcell 

p(~) ; ~~~P (~+n!_)= ~ ~ F(.t!_) .exp(Z11i~.~) 

and the superstructure reflexions Q (Q.!_ not integer) 
the complement structure 

p(~) = p(~) - p(~) = ~ £ F(Q) .exp(211iQ.!0 

(M. Buerger, Vector space 1959). Because p(~) contains 
equal amounts of positive and negative electron density 
(J.W. Jeffery (1964), Acta Cryst. 17,776) this concept 
is not used in direct methods. But there exists a 
structure ~(~) which has positive maxima only and the 
structure fa:tors F( U) of 15(~) coincide with F(Q), 
whereas the F(~) remain unknown. If the pseudotransla
tion has index p=2, the maxima in p(x) cannot be - :::z 
rationally dependent of each other, so that <Fabs(~)> = 
<F 2b (U)>. Therefore theE-normalisation is correct 

a s -· :l:; ....... ~ 

also if the F(Q) are known only. Because of E(U) = E(U) 
phase determination of E(Q) gives phases of E(Q) and 
F(Q). If the index of! is larger than 2, p(~) normally 
shows less rational dependency among the coordinates of 

maxima than p(~. So the assumptions for usin~ direct 
methods are better fulfilled. In these cases (p > 3) it 
can be shown that the sums of phases of triplets-with 
high values of K are more reliably 11 than 0 under 
specific conditions. So phase determination is reduced 
to normalisation of substructure and complement structure. 
If n atoms having formfactors f1, ... ,fn are expected in 
the unit cell of p(x), E- values can be calculated if 
the expected intensity <F ; (U)> and <F ; (H)> is 
approximated by a s - a s -

<F; > = a.exp(-B.sin2e;A2) ~ f~ 
a s j=l J 

using different values of a and B for main and super
structure reflexions. This can be done by normalizing 
{F(~)} and {F(Q)} separately using a standard E
normalizing program. If some atoms of the structure 
satisfy t and the others do not this normalisation is 
equivalent to rescaling theE - values. It can be 
shown by theory and by example (Eukryptit: Tscherry, 
Schulz & Laves (1972), Z. Krist. 135, 175-198) that in 
the case where the pseudotranslation t is nearly but 
not exactly fulfilled, -

<Fa~s(Q)> versus sin 8/A is rather different from the 
expected intensity of a structure with independent 
atoms. The proposed procedure can also be applied to 
pseudocentrosymmetric structures in handling real and 
imaginary part of structure factors separately. But in 
this case it is necessary to determine the coordinates 
of maxima of the centrosymmetric subcell. 

*Present address: Askulapweg 10, D 4630 Bochum, 
Germany (BRD) 

i7 .2-J6 PROBLEHS OF ENANTIOHORPH DISCRININATION IN 
DIRECT HETHODS. By Suzanne Fortier, Hilliam L. Duax and 
Herbert Hauptman, Hedical Foundation of Buffalo, Inc., 
73 High St., Buffalo, NY 14203, U.S.A. 

The problem of enantiomorph definition in space groups 
Pl, P2, P2 1 , C2 and Cc is often •rrongly attributed to 
the presumption that it is not possible, in these space 
groups, to select a starting reflection with a phase 
orthogonal to the origin defining set. 

In simple structures, that is in structures •·lith a ,.,ell 
behaved set of triples (with no unexpectedly large 
deviation from zero) and no significant character of 
pseudo-centrosyrnmetricity, enantiomorph sensitive phases 
are automatically identified by a convergence type pro
cedure and are left out as part of the basis set of 
phases. Horeover, inspection of the phases in the basis 
set, in particular of their interrelationship in terms 
of accessibility-inaccessibility (linear-rational depen
dence) often permits one to single out the best candi
date for enantiomorph definition. 

Hhen the distributions of the normalized structure fac
tors do not suggest any significant degree of pseudo
centrosyrnmetric character, failure to properly define 
the enantiomorph is symptomatic of the occurrence of 
aberrant triples at important links of the phase devel
opment. The possible 11"tvays out 11

, i.e. clean-up techni
ques (editing the triples to weed out the aberrant ones), 
enantiomorph sensitive invariants and seminvariants and 
the method of strong enantiomorph discrimination, will 
be discussed. 
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