17. COMPUTATIONAL METHODS AND ERROR ANALYSIS

17.2-17  soLUTION OF THE PHASE PROBLEM FOR NON-
CENTROSYMMETRIC CASES IN TWO STAGES. By Pan Hai-fu,
Gu Yuan-xin, Xu Zhang-bao, Qian Jin-zi and Zheng Chao-
de, Institute of Physics, Academia Sinica, Beijin,
China.

The phase problem in noncentrosymmetric cases may be
solved in such a way that the real and imaginary parts
of the structure factors are treated separately and
successively. The procedure includes twe steps:

1. The structure is first solved on the basis of a
pseudo symmetry which is higher than that of the actual
one by an additional inversion centre. Signs instead
of phases are then obtained for the structure factors.
These signs would in fact consist of those of the real
parts of the structure factors. Conseguently an E-map
containing both enantiomorphs can be obtained.

2. From the E-map so obtained, the real parts and the
absolute values of the imaginary parts of the structure
factors can be calculated approximately. Finally the
signs of the imaginary parts can easily be determined
and hence the phase problem can be solved with the aid
of the component relation

B, = (£/V) g, L —

where A denotes the real part and B the imaginary part
of the structure factor; £ is a function of the atomic
form factor and V is the volume of the unit cell

(Fan Hai-fu, Acta Physica Sinica, 21 (1965) 1114; see

also J. Karle, Acta Cryst., 21 (1966) 273).

In comparison with the other methods, the procedure
described above has the following advantages:

1. By executing the first step, the amount of calcula-
tion needed for permuting the phases in the starting
reflection set can be reduced by a factor of about 4.
Alternatively the number of reflections in the starting
set can be doubled while the amount of calculation
remains about the same as in the usual permutation
procedure. This is valuable in the determination of
complex structures.

2. Thé second step can strongly restrict the
tendency for the whole set of phases to reduce to a
centrosymmetric one. Hence the procedure has the
effect of stabilizing the specified enantiomorph.
This is important in the determination of structures
with polar space groups like P21.

Crystal structures in space groups PZl and P2 2.2
with and without heavy atoms have beell used as &xamples
to prove the efficiency of the procedure.
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17.2-18 THE PROBLEM OF MULTIPLE SOLUTIOES IW
STRUCTURE DETERMINATION ARD THE APPLICATICHES: OF
MODIFIED SAYRE'S EQUATIORS.

Fan Hai-fu & Zheng Qi-tai,Institute of Physics,
Academia Sinica,Beijin,China.

Three types of crystals often lead to mul-
tiple solutions in the determination of their
atructures:
1.8tructures composed of light atoms with peoler
space groups such as P29, Pna2q, P44y, etc.—
Phase determination by direct methods in this
type of siructures often results in one set of
centrosymmetric phases leading to an E-map con-
taining both enantiomorphs.
2.8tructures with pseudo-sgymmetry higher 5han
the actual symmetry by an additional inverse
centre and/or sub-periodicity of translation —
Two or more structure images releated by the ad-
ditional symmetry would appear gimultaneocusly
in the resulting E-map or Fourier map.
3.8tructures containing heavy atoms with higher
gymmetry than that of the whole structure by an
additional inverse centre and/or sub~pericdici-
ty of translation—Two or more structure imeges
of the light atom portion related by the e&ddi~
tional symmetry would appear slmultaneously in
the resulting E-mep or Fourier msap.

Multiple solutions can be divided into two
categories: :
1.The transletional multiple solutions— Phis
leads to a systemetic undetermination of cer-
tain(but not all)types of phases of the strucs
ture fectorsg. The problem cen be solved with
the aid of the modified Sayre's equations
(Fan Hei-fu,Acta Physica Sinica,21(1965)1105;
Fan Hai-fu,Acta Physica Sinica,24(1975)57; Fan
Hai-fu et al.,Actas Physice Sinica,27(1978)554),
which have the common form of -

o_ : o
Fp=(£/V) %%FH,FH_H,

where F°'s dencte structure factors with phasges
gsystematically undetermined, F's denote siruc-
ture factors with phases derivable from a pseu-
do structure model containing simultaneously
all possible solutions, £ is a function of
atomic form fachtor and V is the volume of the
unit cell,

2.The enantiomorphic double solutions— This
leads to the ambiguity on signs of the imagina-
ry components of &1l the structure factors
(notice that the origin is fixed at the pseudo
inverse centre for the reason of simplicity).
This problem can be zolved by making use ofcanf
other type of modified Sayre's equation — cOm-
ponent relation(Fan Hai-fu,Acta Physica Sinieca,
21(1965)1114; Fan Hei-fu & Zheng Qi~tai, Acte
Physica Sinica,27(1978)169; see also J.Karle,
Acta Cryst.,21(7966)273.),

By=(£/V) %"BH,AH_H,

where A's denote the real components of the
gtructure factors, which can be derived from a
pseudo structure model conteining both enantio~
morphs, while B's denote the imaginary compo-~
nents, of which the absclute values can be ob-
tained as

}Bﬁ'fz( !FHIZ'AEI)VZ

where }FHl's are the observed structure ampli-
tudes.

A number of examples are given tc elucidate the
efficiency of the procedures in solving struc-
tures which had been difficult to solve by
ordinery methods,
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17.2-19 FALSE MOLECULAR IMAGES IN DIRECT
AND HEAVY ATOM PHASE DETERMINATIONS. By W.
Wong-Ng and S. C. Nyburg, Department of
Chemistry,University of Toronto, Toronto,
Ontario, Canada M58 1Al.

We have found, in several instances, that
direct methods or heavy atom methods can
lead to false solutions in which two images
of the true molecules overlap. In all cases
some of the atoms of the two images were
superimposed. Methods of unravelling the
true structure will be illustrated with
examples.

17.2-20 A REAL APPROACH TO DETERMINATION OF PHASES,
Ry D.F,Grant and R.C.G.Killean, Physics Department,
University of St.Andrews, North Haugh, St.Andrews, Fife
KY16 933, Scotland.

It is well known that trivial solutions to phase
determination in the centrosymmetric case yield a
maximimum value fortff*dv for x-ray data. A procedure
has been devised for obtaining non-trivial solutions
which gives maximum values of this integral for certain
restricted sets of structure factors. The contribution
of each structure factor to the integral is evaluated
in turn and then the structure factors are arranged in
order of importance. This order is used to build up
sets of phases giving the maximum value of the
integral. Procedures have been evolved for handling the
different parity groups and for terminating the process
with a limited number of sets of phases. The technique
operates in real rather than reciprocal space, uses the
observed structure factors, and involves no statistical
arguments. The method will be illustrated by reference
to a number of three-dimensional data sets in the space
group PT.
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17.4-01 RESTRAIN: THE PRACTICAL APPLICATION OF A
RESTRAINED LEAST SQUARES REFINEMENT PROGRAM IN PROTEIN
CRYSTALLOGRAPHY. By D. 5. Moss, Laboratory of Molecular
Biology, Birkbeck College, London, U.K. and A.J. Morffew,
IBEM United Kingdom Ltd., Scientific Centre, Winchester,
Hampshire, UK

A restrained least-squares procedure is described that
has been designed for refining protein structures in
conjunction with an interactive computer graphics
facility. By allowing the assigmment of relative
weights to individual atoms in the graphics database,
the user can interact with the refinement program.

The sum of residuals minimised in RESTRAIN is a
function of structure amplitudes, phases and target
geometry. The normal equations are solved by the
Gauss~-Seidel method with a? acceleration and the
under-determined case is solved by the Levenberg-

TMarquardt method. It is the 'Marquardt factor' that
has been adapted to apply the individual relative
weights to the atoms.

The methods, strategy and some results of this program
are described.

17.4-02 A ROBUST/RESISTANT TECHNIQUE FOR CRYSTAL
STRUCTURE REFINEMENT. W. L. Nicholson, Battelle Pacific
Northwest Laboratories, Richland, WA 99352, U. S. A.,
E. Prince, National Measurement Laboratory, National
Bureau of Standards, Washingtom, DC 20234, U. S. A.,
J. Buchanan and P. Tucker, Battelle Pacific Northwest
Laboratories, Richland, WA 99352, U. S. A,
A refinement technique is "robust'" if it works well
over a broad class of error distributions in the data,
and "resistant" if it is not strongly influenced by any
small subset of the data. Least squares possesses
neither property. A more robust/resistant procedure is
to minimize, instead of a simple gum of squared differ—
ences, a sum of terms of the form

o (%) x2/2)[1 - (x/a)? + (1/3) (x/a)"] for !x[ < a,
p(x) = a$/6 for |x] > a. Here x = ry(8)/s, where

£ (9) = wi’*[[Foi| - mi(®)]1, mi(8) = |Fei(®)], and s

is a measure of the width of the error distribution
based on the results of the previous cycle. a is a
constant chosen so that extreme data do not influence
the solution. The function p(x) behaves like the sum of
squares for small x, but is constant for large %, so
that the effect of large differences is deemphasized.
Most least-squares refinement programs can easily be
modified to be more robust/resistant. Both weighted
least squares and the modification are examples of a
class of estimation methods which, for crystal struc-
ture refinement, take the form, minimize the loss
function, £(8) = Ip[r;(8)/s] by selecting 6 so the
normal equations Vf = 0 are satisfied. Let

d(x) = (L/®)p"(x) and w(x) = p"(x). Linearization of
the normal equations gives the iteration formula

q
P . N 3m, (67)
+1 k 1/2
I S LD DI T PN CL VA R o —
i = R B oo k
for updating parameter estimates. Here cik is an ele-
ment of the inverse to the linearized Hessilan matrix,
whose typical element has the form

]



