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17.2-17 ,SOLUTION OF ~rlE PHASE PROBLEM FOR NON
CEJ::.iTROSYMMETRIC CASES IN TWO STAGES. By Fan Hai-fu, 
Gu Yuan-xin, Xu Zhang-baa, Qian Jin-zi and Zheng Chao
der Institute of Physics, Academia Sinica 1 Beijin, 
China. 

The phase problem in noncentrosymmetric cases may be 
solved in such a '"ay that t.l-,e real and imaginary parts 
of the structure factors are treated separately and 
successively. The procedure includes two steps: 

l. The structure is first solved on the basis of a 
pseudo symmetry which is higher than that of the actual 
one by an additional inversion centre. Signs instead 
of phases are then obtained for the structure factors. 
These signs would in fact consist of those of the real 
parts of the structure factors. Consequently an E-map 
containing both enantiomorphs can be obtained. 

2. From theE-map so obtained, the real parts and the 
absolute values of the imaginary parts of the structure 
factors can be calculated approxlmately. Finally the 
signs of the imaginary parts can easily be determined 
and hence the phase problem can be solved with the aid 
of the component relation 

where A denotes the real part and B the imaginary part 
of the structure factor; f is a function of the atomic 
form factor and v is the volume of the unit cell 
(Fan Hai-fu, Acta Physica Sinica, 21 (1965) 1114; see 
also J. Karle, Acta Cryst., 21 (1966) 273). 

In comparison with the other methods, the procedure 
described above has the following advantages: 

1. By executing the first step, the ~UOQ~t of calcula
tion needed for permuting the phases in ~~e starting 
reflection set c~~ be reduced by a factor of about 4. 
Alternatively the number of reflections in the starting 
set can be doubled while the a~ount of calculation 
remains about the same as in the usual permutation 
procedure. This is valuable in the determination of 
complex structures. 

2. Th2 second step can strongly restrict the 
tendency for the whole set of phases to reduce to a 
centros~~etric one. Hence the procedure has the 
effect of stabilizing the specified enantiomorph. 
This is important in the determination of structures 
with polar space groups like P2
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with and without heavy atoms have been used as ex~ples 
to prove the efficiency of the procedure. 

17.2-18 THE PROBLEM OF MULTIPLE SOLUTIONS IN 
STRUCTURE DETERJII!INATION AND THE APPLICATIONS'OF 
MODIFIED SAYRE'S EQUATIONS. 
Fan Hai-fu & Zheng Qi-tai,Institute of PhySics, 
Academia Sinica,Beijin,China. 

Three types of crystals often lead to mul
tiple solutions in the determination of their 
structures: 
1.Structures composed of light atoms with polar 
space groups such as P21, Pna21, P41, etc.-
Phase determination by direct methods in this 
type of structures often results in one set of 
centrosymmetric phases leading to an E-map con
taining both enantiomorphs. 
2.Structures with pseudo-symmetry higher .than 
the actual symmetry by an additional inverse 
centre and/or sub-periodicity of translation ~ 
Two or more structure images related by the'ad
ditional symmetry would appear simultaneously 
in the resulting E-map or Fourier map. 
).Structures containing heavy atoms with higher 
symmetry than that of the whole structure by an 
additional inverse centre and/or sub-periodici
ty of translation--Two or more structure images 
of the light atom portion related by the addi
tional symmetry would appear simultaneously in 
the resulting E-map or Fourier map. 

Multiple solutions can be divided into two 
categories: 
1.The translational multiple solutions-- This 
leads to a systematic undetermination of cer
tain(but not all)types of phases of the struc~ 
ture factors. The problem can be solved with 
the aid of the modified Sayre's equations 
(Fan Hai-fu,Acta Physica Sinica,21(1965)1105; 
Fan Hai-fu,Acta Physics Sinica,24T1975)57; Fan 
Hai-fu et al. ,Acta Physica Sinica,27(1978)554), 
which have the common form of --

F~=(f/V) ,L.F~,FH-H' 
H' 

where F0 's denote structure factors with phases 
systematically undetermined, F's. denote struc
ture factors with phases derivable from a pseu
do structure model containing simultaneously 
all possible solutions, f is a function of 
atomic form factor and V is the volume of the 
unit cell. 
2.The enantiomorphic double solutions-- This 
leads to the ambiguity on signs of the imagina
ry components of ~11 the structur~ factors 
(notice that the origin is fixed at the pseudo 
inverse centre for the reason of simplicity). 
This problem can be solved by making use of ~n
ether type of modified Sayre's equation-- 8om
ponent relation(Fan Hai-fu,Acta Physica Sinica, 
21(1965)1114; Fan Hai-fu & Zheng Qi-tai, Acta 
~ysica Sinica,27(1978)169; see also J.Karle, 
Acta Cryst.,£1(1966)273.), 

BH=(f/V) L BH,AH-H' 
H' 

where A's denote the real components of the 
structure factors, which can be derived from a 
pseudo structure model containing both enantio
morphs, while B's denote the imaginary compo
nents, of which the absolute values can be ob
tained as 

where IFHj•s are the observed structure ampli
j;udes. 
A number of examples are given to elucidate the 
efficiency of the procedures in solving struc
tures which had been difficult to solve by 
ordinary methods. 
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17.2-19 FALSE MOLECULAR Il'!AGES IN DIRECT 
AND HEAVY ATOM PHASE DETER.MINATIONS. By \17. 
\1/ong-Ng and S. C. Nyburg, Department of-
Chemistry,University of Toronto, Toronto, 
Ontario, Canada MSS lAl. 

We have found, in several instances, that 
direct methods or heavy atom methods can 
lead to false solutions in which two images 
of the true molecules overlap. In all cases 
some of the atoms of the two images were 
superimposed. Methods of Q~ravelling the 
true structure will be illustrated with 
examples. 

17.2-20 A REAL APPROACH TO DETERHINATION OF PHASES, 
By D.F.Grant and R.C.G.Killean, Physics Department, 
University of St.Andrews, North Haugh, St.Andrews, Fife 
KY16 gss, Scotland. 

It is well known that trivial solutions to phase 
determination in the centrosymmetric case yield a 
maximimum value for J f>'dv for x-ray data. A procedure 
has been devised for obtaining non-trivial solutions 
Hhich gives maximum values of this integral for certain 
restricted sets of structure factors. The contribution 
of each structure factor to the integral is evaluated 
in turn and then the structure factors are arranged in 
order of importance. This order is used to build up 
sets of phases giving the maximum value of the 
integral. Procedures have been evolved for handling the 
different parity groups and for terminating the process 
Hith a limited number of sets of phases. The technique 
operates in real rather than reciprocal space, uses the 
observed structure factors, and involves no statistical 
arguments. The method will be illustrated by reference 
to a number of three-dimensional data sets in the space 
group PT. 

17.4-0 I RESTRAIN: THE PRACTICAL APPLICATION OF A 
RESTRAINED LEAST SQUARES REFINEMENT PROGRAI~ IN PROTEIN 
CRYSTALLOGRAPHY. By D. S. Moss, Laboratory of t1olecular 
Biology, Birkbeck College, London, U.K. and A. J. Morffe>v, 
IBM United Kingdom Ltd., Scientific Centre, Winchester, 
Hampshire, UK 

A restrained least-squares procedure is described that 
has been designed for refining protein structures in 
conjunction with an interactive computer graphics 
facility. By allowing the assig~~ent of relative 
weights to individual atoms in the graphics database, 
the user can interact with the refinement program. 

The sum of residuals minimised in RESTRAIN is a 
function of structure amplitudes, phases and target 
geometry. The normal equations are solved by the 
Gauss-Seidel method with t>.2 acceleration and the 
under-determined case is solved by the Levenberg-

-Marquardt method. It is the 'Marquardt factor' that 
has been adapted to apply the individual relative 
weights to the atoms. 

The methods, strategy and some results of this program 
are described. 

17.4-02 A ROBUST/RESISTANT TECHNIQUE FOR CRYSTAL 
STRUCTURE REFINEMENT. H. L. Nicholson, Battelle Pacific 
Northwest Laboratories, Richland, HA 99352, U. S. A., 
E. Prince, National Measurement Laboratory, National 
Bureau of Standards, Hashington, DC 20234, U. S. A., 
J. Buchanan and P. Tucker, Battelle Pacific Northwest 
Laboratories, Richland, HA 99352, U. S. A. 
A refinement technique is "robust" if it works well 
over a broad class of error distributions in the data, 
and "resistant" if it is not strongly influenced by any 
"SwEll subset of the data. Least squares possesses 
neither property. A more robust/resistant procedure is 
to minimize, instead of a simple sum of squared differ
ences, a sum of terms of the form 

p(x) ; (x2 /2)[1- (x/a) 2 + (l/3)(x/a) 4 ] for lxl <a, 
p(x) ; a 2/6 for lxl >a. Here x; ri(8)/s, where 

ri(8) ; wJ/ 2[IFoil - mi(8)], mi(8); IFci(8) I, and s 
is a measure of the width of the error distribution 
based on the results of the previous cycle. a is a 
constant chosen so that extreme data do not influence 
the solution. The function p(x) behaves like the sum of 
squares for small x, but is constant for large x, so 
that the effect of large differences is deemphasized. 
Most least-squares refinement programs can easily be 
modified to be more robust/resistant. Both weighted 
least squares and the modification are examples of a 
class of estimation methods which, for crystal struc
ture refinement, take the form, minimize the loss 
function, f(8) ; Ep[ri(8)/s] by selecting 8 so the 
normal equations Vf ; 0 are satisfied. Let 
¢(x); (1/x)p'(x) and w(x); p"(x). Linearization of 
the normal equations gives the iteration formula 

-'- p. N am.(Gq) 
L\8~' 1 ; L cJk L <P[r.(Gq)/sq]w~/2 r (Gq) - 1

--

J k;l i;l l l i ask 
for updating parameter estimates. Here cjk is an ele
ment of the inverse to the linearized Hessian matrix, 
,.,hose typical element has the form 


