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17.2-19 FALSE MOLECULAR Il'!AGES IN DIRECT 
AND HEAVY ATOM PHASE DETER.MINATIONS. By \17. 
\1/ong-Ng and S. C. Nyburg, Department of-­
Chemistry,University of Toronto, Toronto, 
Ontario, Canada MSS lAl. 

We have found, in several instances, that 
direct methods or heavy atom methods can 
lead to false solutions in which two images 
of the true molecules overlap. In all cases 
some of the atoms of the two images were 
superimposed. Methods of Q~ravelling the 
true structure will be illustrated with 
examples. 

17.2-20 A REAL APPROACH TO DETERHINATION OF PHASES, 
By D.F.Grant and R.C.G.Killean, Physics Department, 
University of St.Andrews, North Haugh, St.Andrews, Fife 
KY16 gss, Scotland. 

It is well known that trivial solutions to phase 
determination in the centrosymmetric case yield a 
maximimum value for J f>'dv for x-ray data. A procedure 
has been devised for obtaining non-trivial solutions 
Hhich gives maximum values of this integral for certain 
restricted sets of structure factors. The contribution 
of each structure factor to the integral is evaluated 
in turn and then the structure factors are arranged in 
order of importance. This order is used to build up 
sets of phases giving the maximum value of the 
integral. Procedures have been evolved for handling the 
different parity groups and for terminating the process 
Hith a limited number of sets of phases. The technique 
operates in real rather than reciprocal space, uses the 
observed structure factors, and involves no statistical 
arguments. The method will be illustrated by reference 
to a number of three-dimensional data sets in the space 
group PT. 

17.4-0 I RESTRAIN: THE PRACTICAL APPLICATION OF A 
RESTRAINED LEAST SQUARES REFINEMENT PROGRAI~ IN PROTEIN 
CRYSTALLOGRAPHY. By D. S. Moss, Laboratory of t1olecular 
Biology, Birkbeck College, London, U.K. and A. J. Morffe>v, 
IBM United Kingdom Ltd., Scientific Centre, Winchester, 
Hampshire, UK 

A restrained least-squares procedure is described that 
has been designed for refining protein structures in 
conjunction with an interactive computer graphics 
facility. By allowing the assig~~ent of relative 
weights to individual atoms in the graphics database, 
the user can interact with the refinement program. 

The sum of residuals minimised in RESTRAIN is a 
function of structure amplitudes, phases and target 
geometry. The normal equations are solved by the 
Gauss-Seidel method with t>.2 acceleration and the 
under-determined case is solved by the Levenberg-

-Marquardt method. It is the 'Marquardt factor' that 
has been adapted to apply the individual relative 
weights to the atoms. 

The methods, strategy and some results of this program 
are described. 

17.4-02 A ROBUST/RESISTANT TECHNIQUE FOR CRYSTAL 
STRUCTURE REFINEMENT. H. L. Nicholson, Battelle Pacific 
Northwest Laboratories, Richland, HA 99352, U. S. A., 
E. Prince, National Measurement Laboratory, National 
Bureau of Standards, Hashington, DC 20234, U. S. A., 
J. Buchanan and P. Tucker, Battelle Pacific Northwest 
Laboratories, Richland, HA 99352, U. S. A. 
A refinement technique is "robust" if it works well 
over a broad class of error distributions in the data, 
and "resistant" if it is not strongly influenced by any 
"SwEll subset of the data. Least squares possesses 
neither property. A more robust/resistant procedure is 
to minimize, instead of a simple sum of squared differ­
ences, a sum of terms of the form 

p(x) ; (x2 /2)[1- (x/a) 2 + (l/3)(x/a) 4 ] for lxl <a, 
p(x) ; a 2/6 for lxl >a. Here x; ri(8)/s, where 

ri(8) ; wJ/ 2[IFoil - mi(8)], mi(8); IFci(8) I, and s 
is a measure of the width of the error distribution 
based on the results of the previous cycle. a is a 
constant chosen so that extreme data do not influence 
the solution. The function p(x) behaves like the sum of 
squares for small x, but is constant for large x, so 
that the effect of large differences is deemphasized. 
Most least-squares refinement programs can easily be 
modified to be more robust/resistant. Both weighted 
least squares and the modification are examples of a 
class of estimation methods which, for crystal struc­
ture refinement, take the form, minimize the loss 
function, f(8) ; Ep[ri(8)/s] by selecting 8 so the 
normal equations Vf ; 0 are satisfied. Let 
¢(x); (1/x)p'(x) and w(x); p"(x). Linearization of 
the normal equations gives the iteration formula 

-'- p. N am.(Gq) 
L\8~' 1 ; L cJk L <P[r.(Gq)/sq]w~/2 r (Gq) - 1

--

J k;l i;l l l i ask 
for updating parameter estimates. Here cjk is an ele­
ment of the inverse to the linearized Hessian matrix, 
,.,hose typical element has the form 
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N 

cjk = w L 
i=l 

N 

\vhere 

w = (1/N) L w[r. (8q) /sq], is a variance efficiency 
i=l l 

factor Hith respect to Gaussian error structure. That 
is the parameter estimates 8 have variances of the same 
order as for Gaussian samples of size wN. The «•idth 
parameter sq is a resistant estimate constructed from 
residuals. Several choices are available. He use 
Huber's suggestion (sq+l) 2 = aq/S, Hhere 

N 2 2 
aq = L ¢ [r. (6q)/sq]r. (8q)/(N-p), 

i:::;;l l l 

and S is the expected value of z2¢(Z) 2 Hith Z distribu­
ted according to the true error laH. For Gaussian 
errors S = 0.72767. The variance est~uate of parameter 
estimate ej iss~. = (k2 aqS w2)cjj, Hhere k is a bias 

J - -
correction factor defined as k = 1 + p(l - w)/Nw, and 
p is the number of parameters in the model. \-lith 
<P (x) = 1, w (x) = 1, and the algorithm reduces to or­
dinary, non-linear, weighted least squares Hith classi­
cal estimates of the variances of parameter estimates. 
To test the robust/resistant algorithm He reanalyzed 
the D(+)-tartaric acid data collected in the Single 
Crystal Intensity Project of the IUCr [Hamilton, 
Abrahams & fbthieson, Acta Cryst. ·A26, 1 (1970)]. 
Comparison of three refioements, 1~ recreation of the 
results of Hamilton and Abrahams [Acta Cryst. A26, 18, 
(1970)], 2) inclusion of secondary extinction,-afid 3) a 
robust/resistant refinement for each ~~periment, in­
dicates that there are strong systematic effects in 
most of the experiments. In the best data sets there is 
good agreement bet\veen extinction and robust/resistant 
refinements. In other experiments there is strong evi­
dence of systematic effects other than extinction, and 
the t>:·JO refinements differ significantly. 

17.4-03 CRYSTAL STRUCTURE ANALYSIS AND THE 

PROBLEM OF SECONDARY MINIMA IN THE METHOD OF 

LEAST SQUARES. By Richard Rothbauer, IBM Tho­

mas J. Hatson Research Center, P. 0. Box 218, 

Yorktown Heights, N. Y. 10598, USA. 

The problem of secondary minima restricts the 

possibility of applying the cyclic refinement 

algoritlli~ of the method of least squares in 

order to get ab initio solutions of physical 

systems of equations, which can not be exactly 

solved mathematically. 

For this reason the method of least squares can 

not be effectively used as a tool for ab initio 

crystal structure analysis. 

He will therefore here describe an alternative 

to the method of least squares, which leads 

approximately to the same results if the under­

lying physical problem is meaningful, but which 

avoids the problem of secondary minima, be­

cause it is not based on an extremal principle. 

17.4-04 STRUCTURE FACTOR CALCULATION OF 
ORIENTATIONALLY DISORDERED MOLECULES 

By D. Hohlwein, Institut flir Kristallographie 
der Universitat Tlibingen, D-7400 Tlibingen, 
f'iest-Germany 

The structure factor of librating or orien­
tationally disordered molecules with gauBian 
distribution functions is calculated exactly 
by numerical integration. 

The results are compared with approximation 
methods which correspond to a cumulant expan­
sion of the structure factor. There are alrea­
dy considerable discrepancies at a libration 
angle of 10 degrees. 

The numerical structure factor calculation 
has been successfully applied to the refine­
ment of the plastic phases of C Cl and SF . 
The half-widths of the gauBian ~is~ributio~ 
functions are 40 and 32 degrees in these cases. 

The low number of parameters and their simple 
physical meaning are the main advantages com­
pared to other methods like the analysis with 
cubic harmonic functions. 

The influence of anharmonic distributions can 
easily be considered and is demonstrated by 
an example. 

17.4-05 MONTE-CARLO-SIMULATION OF THE MOLECULFR 
DISTRIBUTION IN ORIENTATIONALLY DISORDERED 

CRYSTALS. By IV. Prandl, Institut fur Kristallographie, 
Universitat Tiibingen, D-7400 Tiibingen, West-Germany. 

Orienta tionally disordered crystals sho•.-1 only a few 
Bragg reflections. Therefore the structural information 
is limited. Depending on the kind of data _analysis the 
scattering density may even become negative. On the 
other hand, L~is quantity may be calculated from the 
knowledge of the molecular interaction potential. In a 
simplifying ansatz a hard core interaction was assumed, 
and applied to the plastic phase of c

2
c1

6 
(space group: 

Im3m). Because of the incompatibility ben;een the site 
symmetry m3m of the molecular center of gravity and the 
molecular symmetry Jm these crystals are intrinsically 
disordered. In a MONTE-CARLO-procedure random orien­
tations of a molecule and all of its eight neighbours 
were computed, and only configurations without atom­
atom-overlap were accepted. The structure of the mole­
cule was taken from gas electron diffraction. The re­
sults, compared with experiments obtained from neutron 
diffraction (P. Gerlach, D. Hohlwein, W. Prandl, F.W. 
Schulz, Acta Cryst. 1 submitted) are the follov1ing. If 
the molecular centers are kept fixed in a bee lattice 
wiL~ the experimentally found lattice constant a = 
7.5 ~~ then L~e scattering density is nearly isotropic. 
This is not trivial because the overall diameter of the 
molecule is larger than the corner-center distance in 
the lattice. The observed an-isotropy could only be 
reproduced after the introduction of a random gauBian 
shift of the molecular centers of gravity. The amount 
of anisotropy is nearly independent of L~e a priori 
width <u2> of the gauBian, provided <u2> is larger 
than the experimental value of 0.1 ~2 . 


