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20.X-Ol COLOR GROUffi FROJv! TiiE MATHEM.A.TICAL POINT 
OF VIEW. By F.ans Zassenlo.a us, Department of Mathematics, 
The Ohio State Universit-y, 231 W. 18th Ave. , 
Columbus, Ohio 43210, u~A. 

After brief historical introduction the various defi
nitions of color symmetry vrill be revie1·red:J compared 
and analyzed. Finally algoritlo~s for classification 
of color symmetries will be discussed and the role of 
the norwslizer concept will be exhibited. 

20.X-02 THE ROLE OF NOfu~LIZERS IN THE THEORY 
OF CRYSTALLOG~~PHIC GROUPS. By W. Fischer, 
Institute of Mineralogy, Univ. of Marburg, 
FR Germany. 

Let G be a group and H a supergroup of G. Then 
the largest subgroup of H that contains G as 
a normal subgroup is called the normalizer of 
G in H, NH(G). It therefore consists of all 

elements h of H that map G onto itself by 

conjugation: h- 1Gh=G. The subset CH(G) of 

NH(G) containing all elements h of H with 

h- 1gh=g for all elements g of G forms a 
normal subgroup of NH(G) called the centra-

lizer of G in H. CH(G) is a supergroup of G 

if and only if G is Abelian. 

More specifically, let G be a crystallographic 
group in three-dimensional space R3. Then es
pecially two choices of H have practical im
portance: (1) H=A, the affine group (group of 
all affine mappings of R3

), results in NA(G), 

the affine normalizer; (2) H=E, the Euclidean 
group (group of all motions in R3

), results in 
NE(G), the Euclidean normalizer. Both norma-

lizers give important informations on the 
structure of G: they show which non-conjugate 
symmetry operations and, in consequence, \vhich 
symmetry elements, which point configurations 
(orbits), and which special positions play 
analogous roles with respect to G. For some 
applications, it is more convenient to use a 
group of automorphisms Aut(G)=NA(G)/CA(G) 

rather than the affine normalizer. If G is a 

space group, Aut(G) is the group of all 
automorphisms. If G is a subperiodic group, 
Aut(G) may be called group'of all affine 
automorphisms; in this case there may exist 
additional automorphisms which do not cor
respond to affine mappings but interchange 
e.g. reflexions and twofold rotations. 

Problems connected with these concepts have 
been treated e.g. by Laves (reduction of 
asvmmetricunits, Z.Krist. (1931) 76,277), 
Hii:shfeld (placing the first atom in a trial 
structure, Acta Cryst. (1968) A24, 3o1), 
Boyle & Lawrenson (interchange of Wyckoff 
positions by shift of origin, Acta Cryst. 
(1973) A29, 353), Fischer & Koch (definition 
of lattice complexes, z. Krist. ( 1 9 7 4) 13 9, 
268) , Koch & Fischer (interchange of Wyckoff 
positions by automorphisms, Acta Cryst. (1975) 
A31, 88), and Burzlaff & Zimmermann (choice 
of orit,in, Z.Krist. (198o) ~' 151). 

Another type of application of normalizers 
occurs within the Zassenhaus algorithm 
(Comment. Math. Helv. (1948) 21, 117) for the 
derivation of space-group types. Here, each 
arithmetic crystal class in Rn is represented 
by a (finite) group of unimodular n x n 
matrices. Then the normalizer of such a group 
in the group of all unimodular n x n matrices 
is used to establish equivalence classes of 
space groups. 

20.X-03 SYMMETRY ANALYSIS BY ELECTRON DIFFRACTION. 
By J. \•J. Steeds, Physics Department, University of 
Bristol, Bristol BS8 lTL United Kingdom. 

Rather general arguments based, for example, on the 
reciprocity theorem may be used to show that the 
symmetry of convergent beam electron diffraction pat
terns is related to 31 diffraction groups, isomorphic 
with the Shubnikov groups of plane sided parallel 
figures with colour symmetry. In the case of perfect 
crystals, these 31 diffraction groups may be directly 
related to the crystal point groups. Adaitional infor
mation, such as the diameters of the higher order Laue 
zones and the presence of dynamic absences, may further 
be used to assign unambiguously the space groups of 
small crystalline specimens. The use of these methods 
for space group determination by electron diffraction 
will be reviewed. 


