
C-350 20. SYMMETRY AND ITS GENERALIZATION 

20.1-01 SYMMETRICAL SOLIDS VIEWED AS THE 
INTERSECTION OF PRISMS. By Moreton Moore and 
I. 0. Angell, Royal Holloway College, University 
of London, Egham, Surrey, TW20 OEX, England. 

Three equa~, s9uare prisms with axes along ~00], 
[010] and LOOlj intersect in a cube if the prism 
faces are parallel to the ( 010), ( 001) and ( 100) 
planes. They intersect in a rhombic dodeca­
hedron if the prism faces make angles of 45° 
with these planes. The cube and the rhombic 
dodecahedron are thus two special cases of a 
class of solids formed by rotating square 
prisms about the axes described. Intermediate 
angles of rotation give solids which may be new 
and crystallographically bizarre even if bounded 
by faces of rational Miller indices. For 
example, the figure shows a perspective view of 
the member of this class bounded-by the twelve 
{210} planes obtained by rotating the prisms 
through tan- 1 (~). The [111] direction is a 
triad axis, (but the tetrad axes have been 
destroyed even though the solid has square 
cross sections). This is just an example of a 
new way of viewing symmetrical solids of both 

crystallographic and 
non-crystall;graphic 
importance. The 
relationships between 
different members of 
the same class of solids 
can best be shown by 
computer-generated 
movie films. 

20.1-02 ORTHORHOf.ffiiC SPACE-GROUP PROJECTIONS. 
By Martin Buerger, MIT, Cawbridge, ~L~, u. s. A 

Orthorhombic space groups are ordinarily rep­
resented by a "standard projection" although 
many have ~p to 6 distinct projections. These 
can be derlved from the "standard projection" 
thus: Starting with a right-handed axial set 
~'~'~' the 3 axial planes ab, be, ca are drawn 
in the same plane, but with co~uon-axes paral­
lel and separated a little. The "standard pro­
jection" is mapped on ab 1 be, or ca. It is-an 
easy task to draw the symmetry elements in the 
other hvo planes. It is helpful to devise a 
generalized Hermann-Mauguin symbol and >vrite 
it just above the second axial vector for that 
plane. For the plane ab the bulk svmbol for 
rotation and screw axes 11a, and fo~ mirrors 
and glide planes ~~· is A; symmetry similarly 
related to ~ is designated B; symmetry simi­
larly related to c as C. If the Bravais lat­
~ice is designated L (with primes if the cell 
lS end-centered) the generalized Hermann-Mau­
guin symbols for projections on ab, be, and 
ca are LABC, L"BCA, and L'vCAB respectively. 
These are based on a right-handed svstem of 
axes. Three more combinations of the three ax­
ial letters are possible by co~uuting two let­
ters for right-handed axes, thus: b,a,c; c,b, 
a; a,c,b. These generate left-handed-orojec~ 
t~ons-whose symbols are L'BAC, L"' CBA: and 
LvACB. All 6 projections have the same origin 
and are without negative axial vectors. Since 
~hey are all generated from any face, any one 
of the 6 can occur on an arbitrary unit-cell 
face. Not all of Lhe 59 orthorhombic space 
groups have all projections distinct: 22 have 
all 6 distinct; 25 have 3 distinct; 1 has 2 
distinct, and in 11 all are identical. 

20.1-03 ROTATION STEREOHEDRA COMPOUNDS FOR 3 x 23 
AND 3 x 432 GROUPS OF SYMMETRY. BY V.I. Burdina, 
Institute of Crystallography, Academy of Sciences of the 
USSR, Moscow, USSR. 

T~e problem of finding various types of regula!' parti­
tlons upon stereohedra at three-dimensional sphere of 
rot~tio~ 53, as well as at three-dimensional tangential 
proJectlve space V3 is considered. 

For t1vo cases of direct products 3 x 23 and 3 x 432 
of the rotation's symmetry groups considered (Burdina V.I. 
DAN USSR, 246, 1, 96 (1979); and DAN USSR 250 4 854 
(1980)) the minimal regions of different ste;eohedra 
have been reduced to plane regions with a polygonal 
boundary. 

After direct scanning of the regions by computer in 
steps of 0.025xl0- 6 , various regions of the same type's 
stereohedra separated by non-linear boundaries have been 
recognized. The coordinates of the polyhedra's vertices 
have been calculated to ±0.001 accuracy. 

Both the number of faces and the number of vertices 
for the calculated polyhedra are usually even, but for 
boundary's stereohedra the number of vertices is always 
odd. 

Based on those partitions, the distributions of 
coordination 2 compounds may be constructed. 

20.1-04 
By R.V.Galiulin, lnstitute of Crystallogra­
ph~/ Ll;..)OH 1icacLemY- of Sciences, Tdoscovr, USSR .. 

Geor;wtrical princil)les of crystallography 
mus-r; be formulated axiomaticallv for the 
su?_cessf~l devel_opment of Gryst;;,.llogra11hic 
ma-r;nematlcal metnods. llut in this case these 
principles become an independent branch of 
,se?metry which m;c;,y be callet1 "crystallo,sra.­
phlc geometry". ~he chief aims of crystallo­
,sro.phic geometry are to distinguish rigorou­
sly and investigate 1) sets of points cor­
responding to the centres of atoms in icleal 
crystal structures, 2) polyhedra corres11011-
ding to the crysto.ls. Cr;ystallographic geo­
metry can be formed on the basis of the fol­
lowinz system of axioms. 
1. Discretness. The distance between any two 

points corresponding to the centres of 
atoms must be greater then some fixed 
length r > o. 

2. Coverage. The distance between any point 
of space and the nearest centre of atom 
must be shorter then some fixed length 
R > 0. 

J. Local eq_uality. Each identical atom is in 
identical enviroment in the sphere of ra­
dius 1 on. (It seems very lil{ely that this 
boundary is eq_ual to 4R. It has been pro­
ved for the plane by Ivl. I. Stogrin). 

4. Rationality. There is a coordinate system 
for each cr~'sta.l in which every plane 
containing a. crystal face has rational 
coefficients. 


