20.1-01 SYMMETRICAL SOLIDS VIEWED AS THE INTERSECTION OF PRISMS. By Moreton Moore and I. O. Angell, Royal Holloway College, University of London, Egham, Surrey, TW20 OEX, England.
Three equal, square prisms with axes along [100], [010] and [001] intersect in a cube if the prism faces are parallel to the (010), (001) and (100) planes. They intersect in a rhombic dodecahedron if the prism faces make angles of 45° with these planes. The cube and the rhombic dodecahedron are thus two special cases of a class of solids formed by rotating square prisms about the axes described. Intermediate angles of rotation give solids which may be new and crystallographically bizarre even if bounded by faces of rational Miller indices. For example, the figure shows a perspective view of the member of this class bounded by the twelve \{210\} planes obtained by rotating the prisms through $\tan ^{-1}\left(\frac{1}{2}\right)$. The [111] direction is a triad axis, (but the tetrad axes have been destroyed even though the solid has square cross sections). This is just an example of a new way of viewing symmetrical solids of both crystallographic and
 non-crystallographic importance. The relationships between different members of the same class of solids can best be shown by computer-generated movie films.
20.1-02 ORTHORHOMBIC SPACE-GROUP PROJECTIONS. By Martin Buerger, MIT, Cambridge, MA, U. S. A

Orthorhombic space groups are ordinarily represented by a "standard projection" although many have up to 6 distinct projections. These can be derived from the "standard projection" thus: Starting with a right-handed axial set $\underline{a} r \underline{b}, \underline{c}$, the 3 axial planes $a b, b c$, ca are drawn in the same plane, but with common axes parallel and separated a little. The "standard projection" is mapped on $a b, b c$, or ca. It is an easy task to draw the symmetry elements in the other two planes. It is helpful to devise a generalized Hermann-Mauguin symbol and write it just above the second axial vector for that plane. For the plane ab the bulk symbol for rotation and screw axes $\|$ a, and for mirrors and glide planes La, is A; symmetry similarly related to \underline{b} is designated B; symmetry similarly related to c as C. If the Bravais lattice is designate \bar{d} (with primes if the cell is end-centered) the generalized Hermann-Mauguin symbols for projections on $a b, b c$, and ca are LABC, L"BCA, and L" CAB respectively. These are based on a right-handed system of axes. Three more combinations of the three axial letters are possible by commuting two letters for righthanded axes, thus: $\underline{b}, \underline{a}, \underline{c} ; \underline{c}, \underline{b}$, a; $\mathfrak{a}, \underline{c}, b$. These generate left-handed projections whose symbols are $I^{\prime} B A C C^{\prime \prime \prime}$ CBA, and LVACB. All 6 projections have the same origin and are without negative axial vectors. Since they are all generated from any face, any one of the 6 can occur on an arbitrary unit-cell face. Not all of the 59 orthorhombic space groups have all projections distinct: 22 have all 6 distinct; 25 have 3 distinct; 1 has 2 distinct, and in 11 all are identical.
20.1-03 ROTATION STEREOHEDRA COMPOUNDS FOR 3×23 AND 3×432 GROUPS OF SYMMETRY. BY V.I. Burdina, Institute of Crystallography, Academy of Sciences of the USSR, Moscow, USSR.

The problem of finding various types of regular partitions upon stereohedra at three-dimensional sphere of rotation S^{3}, as well as at three-dimensional tangential projective space V^{3} is considered.

For two cases of direct products 3×23 and 3×432 of the rotation's symmetry groups considered (Burdina V.I. DAN USSR, 246, T, 96 (1979); and DAN USSR 250, 4, 854 (1980)) the minimal regions of different stereohedra have been reduced to plane regions with a polygonal boundary.

After direct scanning of the regions by computer in steps of 0.025×10^{-6}, various regions of the same type's stereohedra separated by non-1inear boundaries have been recognized. The coordinates of the polyhedra's vertices have been calculated to ± 0.001 accuracy.

Both the number of faces and the number of vertices for the calculated polyhedra are usually even, but for boundary's stereohedra the number of vertices is always odd.

Based on those partitions, the distributions of coordination 2 compounds may be constructed.
20.1-04

CRYBTALJOGRGPGIC GHOLEIRI.

By R.V.Galiulin, Institute of Crystallogra phy USSR hoademy of Sciences, Moscow, USSR.

Geometricel principles of orystallography must be formulated axiomatically for the successful development of orystallognaphic mathentical metiods. But in this case these principles become an independent branch of geometry which may be called "orystallographic geometry". The chief aims of crystallographic geometry are to distinguish rigorously and investigate 1) sets of points corresponding to the centres of atoms in ideal crystal structures, 2) polyhedra corresponding to the orystals. Crystallographic geometry can be formed on the basis of the Pollowing system of axioms.

1. Discretness. The distance between any two points corresponding to the centres of atoms must be greater then some fixe? length $r>0$.
2. Coverage. The distance between any point of space and the nearest centre of atom must be shorter then some fixed length $R>0$.
3. Locai equality. Each identical atom is in icentical enviroment in the sphere of radius IOR. (It seems very likely that this boundary is equal to 4 R . It has been proved for the plane by M.I.Stogrin).
4. Rationality. There is a coordinate systen for each crystal in which every plane containing a orystal face has rational coefficients.
