20.1-05 Анализ групп симметрии кристал лов на основе их матричного представления B. А. गиопо, Ерестснй педагогически институт. Ерест, СССР

На основе матричного представления операш дий симметри анализируется взаподеиствие эле жентов симметрии, дан внвод точечни групп кри сталлов. Показано, что манросиметрия кристалла одноэначно элияет на соотношения медду параметрами элементарной лчейи. Предложен аналй тический метод построения и анализа нристаллогрежически проении. Описана методина опредедения индегсов гранєй простых фори гристаллов. Предлагается затринный способ взаимного перехода пля кристалииеского и обратного пространств. Приведен метод матриного представления федоровсних, черно-белнх, гомотетинннх и предельннх групи жристаллов, а тап же методика расчета матричных позффициентов тензоров второго и третьего рангов, описнваюии 木изические свойства нристаллов различных точеиных групп.
20.1-06

ON THE CLASSIFICATION SYMBOLS OF THE GROUPS OF GENERALIZED SYMMETRY, HOMOLOGY, SIMILARITY SYMMETRY AND CURVILINEAR SYMMETRY. By Z. Durski and H. Nowaczek. Department of Chemistry, Technical University, Warszawa, Poland.
For the purposes of the classification of the groups of genermlized symmetry the Böhm-Koptsik symbol $G_{r t}^{1(p)}$ is applied. This symbol describes the group of p-colored and 1-fold antisymmetry in the r-dimensional space with the t-dimensiond translation subgroup. We propose to give this symbol more general meaning, so it will concern all groups of generalized classical symmetry, homology, similarity symmetry and curvilinear symmetry. To distinguish among various kinds of symmetry, S, H, L, C letter symbols are suggested which are put in place of the letter $G:$
$S_{r t}^{I}(p)$ - is a symbol of generalized classical
$H_{r t}^{1(p)}$ - is a symbol of generalized homology
groups,
$L_{\text {It }}^{I(p)}$ - Is symbol of generalized similarity
$C_{r t}^{1(p)}$ - is a symbol of generalized curvilinear
It is symmetry groups. be used for the crystallographic groups
with 1,2,3,4,6-fold axes, where $c=$ crystallographic.
20.1-07 ON SOMT SIMILARTTY OPERATIONS IN THE THDORY OF SIMILARITY SYMMETRY.By Z.Durski, Department of Chemistry, Technical University, Warszawa, Poland.
Twenty years ago, in 1960, A. V. Shubnikov published a basis of the theory of similarity symmetry. Shubnikov described four operations of similarity symmetry and called them K, L, M , N operations.
Applying Shubnikov's geometric method, we can present still two more similarity operations: C_{p} - reflection through center of similarity and \bar{L} - rotation about the inversion axis of similarity.
Operation C_{p}. Transformations through a similarity center are accompanied by k-multiply growing of the parts of figure and k-multiply growing of distances between those parts and similarity center.
Operation \bar{L}. This operation consist of L and C_{p} operations which are made at the same time, that is to say rotation about L axis through φ and K operation, and a reflection through similarity center / laying on L/. As a result of I operation, depending on the position of the initial part of figure towards C_{p}, two- or
three-dimensional figures can be formed.
This work was made, in 1980, on Xth anniversary of A. V. Shubnikov's death.

Fig. 1. The scheme of three-dimensional figure forming as result of \bar{L} operation $(\varphi=\pi / 2$). On this Fig. the changes of distances and largeneses of the parts of the figure have not been taken into consideration. C_{p} and part 1 of figure are not laying on the one plane perpendicular to L axis. Straight lines $C_{p} A$ and $C_{p} A^{\prime}$ from C_{p} point rise over the Fig. plane. Straight lines $C_{p} B$ and $C_{p} B^{\prime}$ from C_{p} point descond below the Fig. plane. 1, 2, 3... parts of the figure generated one after another.

