Magnetic Mössbauerography was used to study the surface magnetization process of weak ferromagnetic crystals FeBO_3 possessing different degrees of perfection which were evaluated by X-ray diffraction methods, i.e., by method. The rocking curve crystal. Besides, in this case the essentially higher crystal possessing the greater number of defects (Fig. 2) depends on the spin direction of iron ions was studied as a function of magnetic field applied along the scattering plane of two planes, the easy plane (III) and the section line. The measurement data are shown in Figs. 1 & 2. It can be seen from the figures that the crystal possessing the greater number of defects (Fig. 2) has the higher anisotropy energy in the easy plane and takes the higher magnetic field H_2 to form a single-domain effect crystal (Fig. 1).

The validity of our mathematical model is demonstrated by the evaluation of R_0 for large completely correct or completely incorrect models in the space group P1. In these situations of mainly academic interest the coincidence between experiment and theory is surprisingly good.

In experimental situations a model of the structure looked for contains incorrect and correct atoms. The latter group consists of a set of positions known beforehand (e.g. from a Patterson map) and newly found positions (e.g. from a heavy-atom Fourier). New intensity distributions were developed to describe these practical situations. Again the moments of R_0 can be directly computed which means that R_0 remains a proper discriminator function. We will demonstrate that in the evaluation of R_0 and related higher moments the space group symmetry is an important factor. Also, we will present some results pertinent to small structures, because structure size cannot be neglected as parameter in our statistical analysis.