STRUCTURE-ENERGY RELATIONSHIPS OF WERNER CLATHRATES

By L.R. Nassimbene, D.R. Bond, H. Moore and S. Papanicolaou,
Department of Physical Chemistry, University of Cape Town, Rondebosch, South Africa.

We have synthesised and determined the structures of a series of compounds of general formula: \(\text{Ni}[(\text{NCS})_2(\text{C}_6\text{H}_4\text{NR})_2(\text{C}_6\text{H}_4\text{NR'})_2] \cdot n \text{Si}_4\text{H}_8\text{SiO}_4\) where \(\text{R} \) and \(\text{R'} \) is an organic guest molecule.

\[\begin{array}{cccc}
\text{Compd} & n &
\text{R} = 4-\text{Me}, R'_1 = 4-\text{Ph} & 1 \\
2 & R = R'_1 = 4-\text{Me} & 1 \\
5 & R = R'_1 = 4-\text{Ph} & 4 \\
R = R'_1 = 3-\text{Me} & 1 \\
5 & R = R'_1 = 4-\text{Et} & 1 \\
R = R'_1 = 4-\text{Et} & 1 \\
7 & R = R'_1 = 3-\text{Me} & - \\
8 & R = R'_1 = 3,5-\text{Me} & - \\
\end{array} \]

Stoichiometric characterisation of the clathrates was determined by various techniques, including N.M.R., D.T.A. and T.G.A. Host-guest non bonded interactions were studied using atom-pair potentials and the movement of the guest molecules through channels was simulated.

04.5-4 COMPUTATIONAL MODELING OF THE HIGH-PRESSURE STRUCTURE AND THE ELASTIC CONSTANTS OF \(\beta-\text{Mg}_2\text{SiO}_4 \).

By M. Matsui and W. R. Busing*, Chemical Laboratory, Kanazawa Medical University, Uchinada, Ishikawa 920-02, Japan. *Chemistry Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, U.S.A.

Busing and Matsui (Acta Cryst. (1984) submitted) have recently developed a model for simulating crystal structures under hydrostatic pressures or normal and shearing stresses and a way of calculating elastic constants and their pressure derivatives. They have successfully applied the method to \(\alpha- \) and \(\gamma-\text{Mg}_2\text{SiO}_4 \) and succeeded in reproducing both the experimental structures and the observed elastic properties reasonably well (Phys. Chem. Minerals (1984) submitted). In this paper we present the results for \(\beta-\text{Mg}_2\text{SiO}_4 \), which is an intermediate phase in the high-pressure transformation of \(\alpha-\text{Mg}_2\text{SiO}_4 \) to \(\gamma-\text{Mg}_2\text{SiO}_4 \).

\(\beta-\text{Mg}_2\text{SiO}_4 \) is orthorhombic, space group 14/mma, consisting of \(\text{Mg}^{2+} \) \(0^2- \) and separate \(\text{Si}_4^2^+ \) ions. The potential energy for our model includes Coulomb and repulsive interactions between non-bonded atoms and bond angle bending and bond distance straining energy terms for the \(\text{Si}_4^2^+ \) ions. The repulsive potentials used were the same as those for \(\alpha- \) and \(\gamma-\text{Mg}_2\text{SiO}_4 \). The net charges on the Si and O atoms in the \(\text{Si}_4^2^+ \) ions and the covalent bond potentials were adjusted so as to reproduce both the experimental atmospheric-pressure structure and elastic constants well.