Single crystal structure factors for Be have been measured at room temperature on the γ-ray diffractometer at the University of Missouri at Columbia. The experiment was done on a box-shaped sample with approximate dimensions of $2 \times 2 \times 2 \text{mm}$, which is the same sample as was used by Larsen, Lehmann & Maricato (Acta Cryst. A36, 159-163, 1980). The experimental setup is such that the crystal is fully bathed in the homogeneous γ-ray beam. All Bragg reflections were used by Larsen, Lehmann & Maricato as X-ray diffraction measurements: Due to the very low accuracy for further analysis, these data are treated ion will be of little importance.

Absorption in the sample, mainly caused by incoherent radiation, is that secondary extinction is due to increased back donation. Electron density analysis of the analysis of the experimental structure factors. Charge density maps based on these will be shown. This study shows that, using a γ-ray facility like the one at the University of Missouri, accurate γ-ray and neutron diffraction studies can be made on one and the same sample.

Preliminary study of three dicobalt hexacarbonyl acetylene compounds $\text{Co}_2(\text{CO})_6\text{H}_2\mu_\text{C}\text{CH}_3$ (Baert, Guelzim and Coppens, Acta Cryst., submitted) shows that the metal-acetylenic distances decrease with increasing electronegativity of R while the acetylenic C-C distance increases, indicating the strengthening of the Co-C$_{Ac}$ bonds to be due to increased back donation. Electron density study where $R = \text{C}-(\text{CH}_3)_2$ (Gregson, Howard and Baert, in preparation) and $R = \text{CF}_3$ is presented in order to understand the interactions between the acetylene derivatives and the $\text{Co}_2(\text{CO})_6$ fragment.

The deformation density calculated with X-ray and X-ray data formalisms at a resolution of 0.90 Å$^{-1}$ (I > 1) shows three peaks of different heights around the carbon atoms. The acetylenic bond is largely bent with an important peak located outside the line connecting the two carbon atoms. Multipole refinements with different models have been done using the Stewart modified by Coppens formalism.

The best results have been obtained with the 4 d^7 incorporated in the core and the 3 d^7 represented by the monopole 1. There is good agreement between the model dynamic maps and the experimental ones. The d-orbital occupancies have been calculated from the multipole parameters. In each model the d_z^2 orbital (along the Co-Co bond) is slightly depopulated relative to the spherical d^7 configuration in agreement with the long metal-metal distance (2.47 Å). Results from the study of the complexes with the more electronegative substituent CF$_3$ will be compared to those of the previous compound.

The ozal acid molecule forms strong O-O hydrogen bonds to neighbouring molecules in ozal acid dihydrate, ozal acid urea 1:1 and oxalic acid urea 1:2 (Dam, Harkema & Feil, Acta Cryst. B39 (1983) 790; Harkema & ter Brake, Acta Cryst. B32 (1976) 1011; Harkema, Bats, Weljenberg & Feil, Acta Cryst. B29 (1973) 145). The three complexes differ in the weak hydrogen bonds, crystal packing and space group. Accurate X-ray diffraction data have been collected for the three compounds. Neutron diffraction data on the first two compounds provide information on the positional and thermal parameters. Hirshfeld analyses of the electron density distributions were performed. Difference densities for the three compounds are compared. The electron density distribution of the ozal acid molecule does not seem to depend much on the difference in crystalline environment in the different complexes. The features of the strong hydrogen bond are in agreement with a Hartree-Fock-Slater calculation using an extensive basis set of Slater orbitals.