is concluded that better estimates are obtained
with anharmonic temperature factors if a signi-
ficance level in fitting the experimental data with the anharmonic model is obtained.

Anharmonic temperature factors were programmed
for structures where the anharmonicity is due
to librations of (rigid) molecules. Here only
three anharmonic parameters are needed (three
parameters of the (supposed) principal libra-
tions about a supposed origin). The anharmonic
third order vibration tensors of the individual
atoms concerned are all calculated from these
three librational parameters. In refinements
with the structures of thiophyridone and nitro-
ic acid (room temperature X-ray data) the
weighted R values were significantly lowered
(significance level < 0.005) with these three
extra parameters. The values of the librational
parameters obtained do not always agree with
those obtained from a TLS analysis of the har-
monic vibration tensors. For the anharmonic
model the distances between the mean positions
were always shorter than those for the harmonic
model. For thiophyridone the decreases were
< 0.0012 Å, for nitric acid < 0.0060 Å. For
urea, thiourea and p-dicyanobenzene at low tem-
perature, deformation densities were calculated
with only harmonic and with the three addition-
al anharmonic parameters. Comparison of the
maps shows that the effect of the anharmonic
nature of the density distribution is small and
rarely exceeds 0.1eÅ⁻³. For heavier atoms the
effect may well be larger.

06.5-2 X-RAY DIFFRACTION STUDY ON THE ANHARMONIC
THERMAL VIBRATIONS OF ATOMS IN ZnX(Y=S,Se,Te)
T. Yamanka, Y. Tekkuchi and M. Tokonami, Faculty of
Science, University of Tokyo, Tokyo, Japan

In relation to our previous study on the temperature
dependence of the anharmonic thermal vibration of atoms
by high temperature refinements of MgAl₂O₄ up to 1933 K
(Yamanka et al. Acta Crystal. (1964) 20) an investigation
between valence charge density and the anharmonicity has
been elucidated by X-ray structure refinements of ZnX (X=
S,Se,Te). In a monoclinic structure (R, m), Zn in
ZnS at 0,0,0 and X on Zn at 1/4,1/4,1/4.

Spherical samples of ZnS, ZnSe, ZnTe were prepared
from grinding the crystals grown by the chemical transport
method. X-ray diffraction intensity measurement at 20°C
were carried out with a four-circle diffractometer using
Mono-Ka radiation monochromated by pyrolytic graphite.
Intensities measured in the range 0.12<sinθ<1.32 were
correction for Lorentz and polarization effects and
for absorption. This study was initiated by the refinement
of the temperature factor T(θ)
based on the harmonic oscilla-
tion model besides the isotro-
ic extinction parameter.

Difference Fourier syntheses
based on the structure factors
revised from the harmonic
refinements of ZnS(R=1.74%),
ZnSe(1.68%) and ZnTe(1.43%)
revealed the residual electron
density around atoms, as shown
in Fig. 1. A tetrapod shape
structure was found in the
anharmonic thermal vibration
in consideration of 3D Rush of
Zn giving spherical electron
densities around X(S,Se,Te) ascribe to both effects of
the anharmonicity and valence electron density given by
the pseudopotential calculation (Cohen, Science (1973)
179, 1189). These features are more remarkable in ZnTe
having a covalent bonding character stronger than those of
ZnS or ZnSe.

Before the anharmonic refinement, the effect of thermal
diffuse scattering (TDS) was taken into account for the
diffraction intensity correction. A theoretical approach
for the TDS correction derived from Mannisalo and Kurrits
(J. Appl. Crystal. (1978) 11, 179) was employed. The evalua-
tion of the TDS correction factor in the equation of
\[\log_{10} I_{\text{TDS}}(\theta) = c \]
was conducted in terms of not only elastic constants of ZnX
but also scanning modes and scattering vector defined by the
"S matrix. The TDS correction resulted in the improvement of the reliability (R-factor)
of the refinement.

For the anharmonic refinement, a cumulant expansion
of (10) in the form \[T(\theta) = \exp \left[\sum_{i=1}^{n} \right] \]
The coefficients of the higher order anharmonic tensors
of atoms in ZnTe are exceedingly larger than those in
ZnS(Table 1), probably resulting form the difference
in the nature of chemical bonding unlike the results of a
neutron diffraction study by Cooper et al. (Acta Crystal.
(1973) A29, 49).

After the anharmonic refinements, the
residual electron densities
mentioned disappeared in
differences
Fourier maps of ZnX.

06.5-3 ANHARMONICITY OF CUBIC CaPbCl₃ NEAR
THE PHASE TRANSITION By M. Sakata, H. Miyatake
and J. Harada, Faculty of Engineering, Nagoya
University, Chikusa-ku, Nagoya, Japan

CaPbCl₃ exhibits a cubic to tetragonal phase
transition at 320K due to the condensation of
M₃ phonons in perovskite structure. If a
connection with this phase transition an anom-
alous temperature dependence of the tempera-
ture parameters of Cl ion has been known to
exist in the cubic phase, besides a very big
anisotropy B₁₃(Cl)<B₂₃(Cl). An analysis of
this behavior has been made by the present au-
thors and others(Sakata et al. Acta Crystal. (
1980) A36, 99) in terms of one particle poten-
tial approximation including higher order an-
harmonisities. Harmonic potential model is,
however, shown to be insufficient if potential
parameter is regarded as temperature dependent
Further least square refinements were then carried
out for the following three potential
models to Cl ion:

Model A: \[V_0 = V_0 + (1/2)\alpha U_0^2 \]

Model B: \[V_0 = V_0 + (1/2)\alpha U_0^2 + \beta U_0^4 \]

Model C: \[V_0 = V_0 + (1/2)\alpha U_0^2 + \beta U_0^4 + \gamma U_0^6 \]

with \(U_0^2 = U_0^2 + U_0^2 \) where \(\alpha,\beta,\gamma \) are potential
parameters and \(U_0, U_0 \) etc are the displace-
ments of the ion on the plane. In the analy-
sis a direct numerical integration method was