08.2-50 SYNTHESIS AND CRYSTAL STRUCTURES OF

\(\text{RE}_3(\text{SiO}_4)_2\text{Cl} \) AND \(\text{RE}_3(\text{SiO}_4)_2\text{OH} \). By H. Gerlach, H. Hapke-
stein, O. Jarchow, H.-K. Klaska, Mineralogisch-Petro-
graphisches Institut der Universität, Grindelallee 48,
2000 Hamburg 13, West-Germany.

The crystal structures of a series of rare earth-sili-
cates synthesized under hydrothermal conditions (psi.35k, T=800'C) in the REI-, SiO1, and RE..-SiO1 systems
have been determined as a further advance in the development of
chemical crystallography for the RE-silicate compounds. The new
compounds \(\text{RE}_3(\text{SiO}_4)_2\text{Cl} \) and \(\text{RE}_3(\text{SiO}_4)_2\text{OH} \) show isotopic
structures.

Structural studies have been done for the compounds
\(\text{Sm}_3(\text{SiO}_4)_2\text{Cl} \) and \(\text{La}_3(\text{SiO}_4)_2\text{Cl} \). X-ray diffraction pat-
terns indicated that \(\text{Sm}_3(\text{SiO}_4)_2\text{Cl} \) is orthorhombic, space
group \(\text{Pnma} \), \(a=14.470\text{Ä}, b=6.513\text{Ä}, c=6.777\text{Ä} \) and \(Z=4 \).
This structure is isotypic with \(\text{Yb}_3(\text{SiO}_4)_2\text{Cl} \) which has
group \(\text{Pmna} \) and \(a=14.652\text{Ä}, b=6.572\text{Ä}, c=6.742\text{Ä} \) and \(Z=4 \).
A single-crystal X-ray study
shows a new structure type for \(\text{La}_3(\text{SiO}_4)_2\text{Cl} \). The crystal
structure was solved by direct methods and refined by
least squares techniques in the space
group \(\text{Pbnm} \), \(a=14.470\text{Ä}, b=6.480\text{Ä}, c=6.828\text{Ä}, Z=8 \), and \(Z=2 \).

Analyses of this series of compounds revealed the
dependence of the character of crystal structures on the
size of the RE-Ions. The symmetry decrease from
orthorhombic to monoclinic with increasing size of the
RE-Ion. The reason of symmetry-change is the different
coordination-behaviour of the small and the large RE-
ions. \(\text{Sm} \) in \(\text{Sm}_3(\text{SiO}_4)_2\text{Cl} \) is \(s \)-coordinated in form of
\(\text{Sm}(10)\text{Cl}_4^1 \) and \(\text{Sm}(2)\text{Cl}_6 \)-polyhedra, while \(\text{La} \) in
\(\text{La}_3(\text{SiO}_4)_2\text{Cl} \) is surrounded by eight oxygen and one
chlorine \& Atom in two different polyhedra.

08.2-52 CUBIC \(\{\text{Ni(C,H)}_2\}_{2}\text{H}_2\text{O} \) —
A DOUBLE RING SILICATE WITH A ZEOLITE LIKE
STRUCTURE AND \(\text{H}_2\text{O} \) WATER CLUSTERS.

By G. Bissert and F. Liebau, Mineralogisches
Institut der Universität Kiel, Germany.

Single crystals synthesized by Gerke et al.
(ACS Symposium Series 194, J. S. Falcone Jr.,
editor, 1982, 305-318) crystallize with space
group \(\text{Fm}3c \), \(a=28.61(1)\text{Ä} \) and \(Z=24 \).
The structure was solved by direct methods (MULTAN)
and refined to \(R=0.059 \) for 1521 independent
reflections.

One tetrabutylammonium and seven \(\text{H}^+ \) ions per
four-membered double ring \(\{\text{Si}2\text{O}12\}^\text{2-} \) are present.
The \(\text{H}^+ \) ions form short hydrogen bonds of 2.6 \(\text{Å} \)
to terminal oxygen atoms of the double rings. The resulting
structure (Fig. 1) resembles that of zeolite \(\text{A} \) with \(\text{Si}-0... \text{H}^+-\text{O}-\text{Si} \)
bonds replacing the \(\text{Si} \)–\(\text{O} \)–\(\text{Si} \) bonds of the zeo-
lite. The silicate "framework" contains two
types of cages which resemble truncated octa-
hedra and truncated cuboctahedra.

The larger cages are occupied by the \(\{\text{Ni(C, H)}_2\}_{2}\text{H}_2\text{O} \)
ion such that the \(\text{Ni} \) atoms lie in the centres of the
"cube faces" common to two large cages and the
alkyl groups extend pairwise into these adja-
cent cages. Each large cage contains 12 butyl
groups.

Each truncated octahedron houses eight water
molecules with their oxygen atoms located on
the threefold rotation axes. Eight such oxygen
atoms are arranged as a cube with 0...0
distances of about 2.8 \(\text{Å} \). In addition eight oxygen
atoms from \(\text{H}_2\text{O} \) are located near the centres of the
"hexagons" of the silicate framework on the
threefold axes. They are hydrogen bonded
to three of the six terminal oxygen atoms which
belong to three different \(\{\text{Si}2\text{O}4\}^\text{2-} \) groups
(0...0 distance ca. 2.8 \(\text{Å} \)) and to the inner
water cube with 0...0 ca. 2.8 \(\text{Å} \). The resulting
\(\{\text{Ni(C, H)}_2\}_{2}\text{H}_2\text{O} \) group seems to be the largest 3-dimen-
sional water cluster reported in crystalline
state.

Fig. 1. Arrangement of \(\text{Si} \) atoms (.) and ter-
ninal oxygen atoms (o). One half of the unit
cell 0 \(\leq z \leq 1/2 \) is shown. A indicates the cen-
tre of one face common to two large cages and
is the position of the nitrogen atom of the
\(\{\text{Ni(C, H)}_2\}_{2}\text{H}_2\text{O} \) ion.