08. INORGANIC AND MINERALOGICAL CRYSTALLOGRAPHY

08.2-53 SYNTHESSES AND CRYSTAL STRUCTURES OF ANILINUM \(\beta \)-OCTAOLYBDATES.

a) Dept. Química (Inorganica) Univ. del País Vasco, Bilbao, Bilbao, Spain; b) Dept. Química (Inorganica) Univ. Complutense, Madrid-6, Spain.

Anilinium \(\beta \)-octaolylbdates have been prepared in acidic aqueous solutions (\(\rho H=2.5 \)) through:

\[
\text{MoO}_3 + B \rightarrow (\text{BH}_4)^+ \text{MoO}_2\text{O}_2^- \]

\(B = \text{aniline} \) (i), N-methylaniline (ii), N,N-dimethylaniline (iii), N-ethylaniline (iv) and N,N-diethylaniline (v).

Single crystals of all these compounds have been obtained.

Crystal data for (i) are: (C\(_6\)H\(_5\)N)\(_4\) MoO\(_2\text{O}_2\). \(a = 10.007(1) \), \(b = 8.014(2) \), \(c = 14.049(3) \) \(\text{\AA} \).

The preparation of phosphorus condensed into chains via sharing RuP\(_6\) octahedra

\(\text{Ru}_2\text{P}_{10} \quad \text{(1)} \quad \mu_{\text{As}} \quad \text{sp}^3 \text{d hybrid (II)} \)

Ru-P \(_6\) octahedra are well characterized (B.Aronsson, T.Lundström, and S.Rundquist: Anilinium fl-octaolylbdates.

In the binary system Ru-P, the compounds Ru\(_3\)P, Ru\(_5\)P and Ru\(_6\)P are well characterized. B.Aronsson, T.Lundström and S.Rundquist: Borides, Silicides and Phosphides, Münch, London (1965): N.Jestechno and D.J.Braun, Acta Crystallogr. B 33, 3401 (1977)). The preparation of phosphorus rich transition metal phosphides as syntheses for ternary superconducting compounds yields from tin melt the new compound Ru\(_6\)P.

Crystal structure determination: single crystal, 4-circle diffractometer, 1107 hkl, R=5.94, space group P1, \(a = 95.2(1) \text{\AA} \), \(b = 831.3(3) \text{\AA} \), \(c = 586.6(3) \text{\AA} \), \(\alpha = 112.35(4)^\circ \), \(\beta = 101.41(4)^\circ \), \(\gamma = 98.19(5)^\circ \).

Thermal decomposition of (i) occurs in three steps, the final product being MoO\(_3\).

Crystal structures of (ii), (iii), (iv) and (v) are in process.

08.2-54 CRYSTAL STRUCTURE OF RUTHENIUM TRIPHOSPHIDE

By N.Hile and G.G. von Schnering, MPPK,Stuttgart, FRG.

In the binary system Ru-P, the compounds Ru\(_3\)P, Ru\(_5\)P, Ru\(_6\)P, and Ru\(_7\)P are well characterized. B.Aronsson, T.Lundström and S.Rundquist: Borides, Silicides and Phosphides, Münch, London (1965): N.Jestechno and D.J.Braun, Acta Crystallogr. B 33, 3401 (1977)). The preparation of phosphorus rich transition metal phosphides as syntheses for ternary superconducting compounds yields from tin melt the new compound Ru\(_6\)P.

Crystal structure determination: single crystal, 4-circle diffractometer, 1107 hkl, R=5.94, space group P1, \(a = 95.2(1) \text{\AA} \), \(b = 831.3(3) \text{\AA} \), \(c = 586.6(3) \text{\AA} \), \(\alpha = 112.35(4)^\circ \), \(\beta = 101.41(4)^\circ \), \(\gamma = 98.19(5)^\circ \).

The thermal decomposition of (i) occurs in three steps, the final product being MoO\(_3\).

Crystal structures of (ii), (iii), (iv) and (v) are in process.

08.2-55 THE CRYSTAL STRUCTURE OF THE TECHNETIUM POLYARSENIDE \(\text{Te}_2\text{As}_3 \).

By L.D. Dessau and W. J. Jeffrey, Inorganisch-Chemisches Institut, Universität Münster, D-4400 Münster, West Germany.

The crystal structure of the new compound \(\text{Te}_2\text{As}_3 \) has been determined from single crystal X ray data. It has triclinic symmetry, space group P1. The lattice constants were refined from Guinier powder data: \(a = 6.375(2) \ \text{\AA} \), \(b = 6.312(2) \ \text{\AA} \), \(c = 8.019(3) \ \text{\AA} \), \(\alpha = 95.70(2)^\circ \), \(\beta = 104.28(2)^\circ \), \(\gamma = 95.44(2)^\circ \), \(V = 5297 \ \text{\AA}^3 \), \(Z = 1 \).

The crystal structure of the new compound \(\text{Te}_2\text{As}_3 \) has been determined from single crystal X ray data. It has triclinic symmetry, space group P1. The lattice constants were refined from Guinier powder data: \(a = 6.375(2) \ \text{\AA} \), \(b = 6.312(2) \ \text{\AA} \), \(c = 8.019(3) \ \text{\AA} \), \(\alpha = 95.70(2)^\circ \), \(\beta = 104.28(2)^\circ \), \(\gamma = 95.44(2)^\circ \), \(V = 5297 \ \text{\AA}^3 \), \(Z = 1 \).

The crystal structure of the new compound \(\text{Te}_2\text{As}_3 \) has been determined from single crystal X ray data. It has triclinic symmetry, space group P1. The lattice constants were refined from Guinier powder data: \(a = 6.375(2) \ \text{\AA} \), \(b = 6.312(2) \ \text{\AA} \), \(c = 8.019(3) \ \text{\AA} \), \(\alpha = 95.70(2)^\circ \), \(\beta = 104.28(2)^\circ \), \(\gamma = 95.44(2)^\circ \), \(V = 5297 \ \text{\AA}^3 \), \(Z = 1 \).

The crystal structure of the new compound \(\text{Te}_2\text{As}_3 \) has been determined from single crystal X ray data. It has triclinic symmetry, space group P1. The lattice constants were refined from Guinier powder data: \(a = 6.375(2) \ \text{\AA} \), \(b = 6.312(2) \ \text{\AA} \), \(c = 8.019(3) \ \text{\AA} \), \(\alpha = 95.70(2)^\circ \), \(\beta = 104.28(2)^\circ \), \(\gamma = 95.44(2)^\circ \), \(V = 5297 \ \text{\AA}^3 \), \(Z = 1 \).

The crystal structure of the new compound \(\text{Te}_2\text{As}_3 \) has been determined from single crystal X ray data. It has triclinic symmetry, space group P1. The lattice constants were refined from Guinier powder data: \(a = 6.375(2) \ \text{\AA} \), \(b = 6.312(2) \ \text{\AA} \), \(c = 8.019(3) \ \text{\AA} \), \(\alpha = 95.70(2)^\circ \), \(\beta = 104.28(2)^\circ \), \(\gamma = 95.44(2)^\circ \), \(V = 5297 \ \text{\AA}^3 \), \(Z = 1 \).

The crystal structure of the new compound \(\text{Te}_2\text{As}_3 \) has been determined from single crystal X ray data. It has triclinic symmetry, space group P1. The lattice constants were refined from Guinier powder data: \(a = 6.375(2) \ \text{\AA} \), \(b = 6.312(2) \ \text{\AA} \), \(c = 8.019(3) \ \text{\AA} \), \(\alpha = 95.70(2)^\circ \), \(\beta = 104.28(2)^\circ \), \(\gamma = 95.44(2)^\circ \), \(V = 5297 \ \text{\AA}^3 \), \(Z = 1 \).