08.3-3 X-RAY INVESTIGATION OF CRYSTALLIZATION AND THERMAL EXPANSION OF AuSn₄, PdSn₄, AND PtSn₄.

By R. Kaszkiol and W. Torkoczynski, Organisch-Chemisches Institut, Universität München, Germany.

Isomorphous crystal structures of AuSn₄, PdSn₄ and PtSn₄ are described by the orthorhombic space group Ab2 (Schubert & Rosler, Z. Metallkd. (1955) 46, 249; Kublik & Woćczyński, J. Less-Comm. Met. (1964) 14, 415). The investigation of crystallization process of AuSn₄, PdSn₄, and PtSn₄ revealed the existence of the relationship between the speed of crystallization and the formation of superstructure (with 6-fold extension of c-parameter).

In the present work the single crystals of all three compounds were obtained in order:

(i) to check whether crystallization process of PdSn₄ and PtSn₄ can also lead to the superstructure formation,
(ii) to compare the thermal expansion of all three compounds.

The results are following:

(i) Contrary to AuSn₄, attempts to obtain PdSn₄ and PtSn₄ single crystals from stoichiometric alloys were unsuccessful. Therefore, single crystals of PdSn₄ and PtSn₄ were obtained by the fast cooling of the melted mixtures of the pure metals with the excess of tin, which then was etched. As a result of this procedure, single crystals were obtained with a shape of rectangular prisms. X-ray photographs in this case were taken but gave no evidence of the superstructure.

(ii) Thermal expansion coefficients were calculated on the basis of precession lattice parameters measurements performed with a Bond-type diffractometer (Kublik & Woćczyński, J. Less-Comm. Met. (1964) 14, 415) equipped with the high- and low-temperature attachment. Lattice parameters are almost linear vs. temperature. Numerical values of the linear (α) and volume (β) thermal expansion coefficients calculated at T = 298 K are presented below.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Temp. Range</th>
<th>α</th>
<th>β</th>
</tr>
</thead>
<tbody>
<tr>
<td>AuSn₄</td>
<td>300-473 K</td>
<td>2.21</td>
<td>5.90</td>
</tr>
<tr>
<td>PdSn₄</td>
<td>194-500 K</td>
<td>1.25</td>
<td>5.31</td>
</tr>
<tr>
<td>PtSn₄</td>
<td>295-409 K</td>
<td>1.24</td>
<td>4.92</td>
</tr>
</tbody>
</table>

The results presented above show distinctly different behaviour of AuSn₄ in comparison with the two other compounds. For AuSn₄ the difference between the lattice parameters α and β is much less than for PdSn₄ and PtSn₄. Therefore in AuSn₄ stacking faults can appear relatively easy and possibility of superstructure formation exists. This leads probably also to the different character of the thermal expansion of AuSn₄.

As it was stated, in the case of the fast crystallization AuSn₄ shows superstructure which disappears when the sample is heated and homogenized. This phenomenon can be a reason of different superconducting critical temperatures measured for the thin film of AuSn₄, obtained by sputtering of tin and gold on the cooled substrates (Klokmom & Choin, Acta Met. (1986) 34, 565) and for the bulk and homogenized sample (Koch, Z. Metallkd. (1964) 55, 159).

08.3-4 ANOMALOUS SCATTERING PHENOMENA APPLIED TO THE STUDY OF SHORT-RANGE ORDER IN TERNARY ALLOYS.

By H. Inasaki, S. Hashimoto and Y. Watanabe, The Research Institute for Iron, Steel and Other Metals, Tohoku University, Sendai.

J. Harada, K. Ohshima and M. Sakata, Faculty of Engineering, Nagoya University, Nagoya, H. Tetsuuchi, Faculty of Science, Kwansei Gakuin University, Kishiwada. T. Matsushita, T. Nakajima and T. Ishikawa, KEK, National Laboratory for High Energy Physics, Ibaraki, Japan.

Intensity measurement of diffuse scattering from a short-range-ordered Cu-20at%Ni-24at%Sn alloy single crystal has been carried out using a monochromatic radiation selected from a band of continuous spectrum of synchrotron orbital radiation now available at KEK. A simple mathematical treatment of the three sets of intensity data obtained with the three wavelengths lying nematic mixtures of the cationic component atoms enables one to divide the observed intensity into partial intensities arising from the spatial correlation of the three different pairs of atoms: Cu-Sn and Zn-Cu. It has been found that a specific pair of atoms in ternary alloy does not behave in the same manner as it does in binary alloy.

Attempts have also been made to divide the diffuse scattering intensity around a fundamental reflection into components arising from displacements of atoms and from clustering of atoms.

08.3-5 THE STRUCTURE OF THE TERNARY CARBIDE Ho₂Cr₄C₆. By R. Köhler and W. Jeitschko, Anorganisch-Chemisches Institut, Universität München, D-8040 Münster, West Germany.

The new compounds R₂Cr₄C₆ with R = Y, Sm, Gd, Tb, Dy, Ho, Er, Tm, Lu were prepared by arc melting the stoichiometric mixtures of the elemental components and subsequent annealing at 900°C. They crystallize with a new structure type which was determined from single crystal X-ray data of Ho₂Cr₄C₆. It has orthorhombic symmetry, space group C2/m and the lattice constants: a = 10.480 (2) Å, b = 3.602 (3) Å, c = 10.533 (1) Å, β = 106.37 (1)°, V = 1071 Å³, Z = 2. The least squares refinement resulted in a residual of R = 0.027 for 24 variables and 739 independent F values. The structure may be derived from a body centered cubic lattice by distortion and ordering of the metal atoms (Fig. 1). One of the distorted octahedral voids is filled with carbon atoms. The refinement of the occupancy factors of the two independent carbon positions resulted in almost the ideal values (occupancy parameters of 97 ± 4 and 94 ± 3 %). Each Ho atom is surrounded by 6 Ho (at distances from 3.36 to 3.59 Å), 5 Cr (3.00 to 3.15 Å) and five carbon atoms (2.41 to 2.63 Å). The Cr atoms have coordination number 11 (5 Ho, 2 Cr, and 4 C atoms). The two different carbon atoms have 2 Cr ± 4 Ho and 3 Cr ± 3 Ho neighbors with Cr-C distances varying between 1.91 and 2.03 Å. The structure is closely related to that of orthorhombic UMo₂C (Cromer, Larson & Hooff, Acta Cryst. (1964) 17, 2721). The latter structure can also be derived from a body centered cubic metal lattice by ordering of the metal atoms and filling (in this case one third) of the octahedral voids by carbon.
The title compound was prepared by reaction of the elemental components in a high frequency furnace with subsequent annealing at 800 °C. It crystallizes with a rhombohedral cell, space group R3m and the hexagonal lattice constants: a = 8.9714(7) Å, c = 13.7832(2) Å, V = 871.2 Å³, Z = 3. The structure was determined from single crystal X-ray data and refined to a residual of R = 0.023 for 25 variable parameters and 414 independent structure factors. The structure can be derived from binary structure types by filling all octahedral voids formed by a square of Mn atoms (Mn-C distances of 1.94 Å and 2.57 Å) and two Pr atoms at 2.57 Å. The ideal composition with all octahedral voids filled is represented by the formula Pr₃Mn₁₁Ge₈. The refinement of the occupancy parameter of the carbon positions, however, showed that these positions are only occupied to 57±3% in the crystal picked for the structure determination. The Pr atoms are situated in a coordination polyhedron formed by three carbon atoms at 2.57 Å and between 9 and 13 Mn neighbors (Fig. 1).