11. REAL AND IDEAL CRYSTALS

THE X-RAY DIFFRACTION CONTRAST OF NON-CRYSTALLOGRAPHIC DISLOCATION. By E. Zielińska-Kubala, S. Zieliński, Institute of Experimental Physics, Warsaw University, Warsaw, Poland.

The diffraction contrast of grown-in dislocations in the [1 1 0] oriented 6% single crystals was studied by x-ray section topography. Particular attention was paid to the direct image. Formation of such an elongated direct image (Fig. 1) is a result of creation of new wave-fields for the dislocation situated near the S0 side of the Borrmann prism (Kowalski, this conference). The dislocation line direction found by fitting the Lang topographic kinematical images with the computed projections and the topograph plane is marked by x in Fig. 2. In spite of formal considerations (O. Peche, Chem. Soc., 82, 1963) it is not a crystallographic direction. The geometrical position of the elongated direct image on all the section topographs agrees very well with the computed one.

Fig. 1. Fig. 2.

Because of its high sensitivity to strain, conventional x-ray diffraction topography can only be used to examine specimens with low dislocation densities. The distribution of elastic and plastic deformation in more highly dislocated crystals may be studied by x-ray topographic techniques, however, by mapping the positions of equilibrium contours (analogous to TEM band contours) as a function of rotation. White beam topography may also be used to map deformation: absorption edge contours are formed if the specimen is oriented to diffract a range of different diffraction vectors and the specimen rotation axes, all of the components of the strain tensor can be determined as a function of position. Examples of contours produced with monochromatic radiation and with white radiation are given, and the mapping technique is used to analyze components of the strain field surrounding a precipitate of niobium hydride. Preliminary measurements of the distribution and magnitude of deformation in and around the plastic zone in a notched niobium crystal are also described. Errors in the analysis arise mainly from the uncertainty in contour positions [±0.05 micrometers], and the estimated error in the strain components of the matrix surrounding the hydride precipitate is on the order of ±0.5.

Research supported by the US ONR contract USN 0014-83-K-0568.

Presently at: Dept. of Mat. Sci. and Eng., Northwestern University, Evanston, Illinois, USA.

The x-ray topographic technique most commonly practised with non-monochromatised, white synchrotron radiation employs a broad incident beam which covers most or all of the area of the crystal that is of concern for the investigation in progress. This technique is most obviously applicable to plate-shaped specimens, and is illustrated, for example, in a study of polished sections with 0.2 mm thick of natural beryl (N. Herres and A. R. Lang, J. Appl. Cryst. 16 (1983) 47-56). Sometimes, however, the location of a particular defect within the crystal needs to be pinpointed. To do so one revert to the section topograph technique (A. R. Lang, Acta Metalurgica 5 (1957) 358-369). This is the most fundamental x-ray topographic method from the diffraction-theoretical point of view, and it is x-ray section topograph patterns which are the first targets for attempted matching with simulated x-ray diffraction contrast images of lattice defects. Embodiment of the section topograph technique for use with synchrotron radiation has involved the design of a miniature goniometer which can be easily transferred between the synchrotron source at Daresbury and home-laboratory conventional sources of characteristic radiation (A. R. Lang, Rev. Sci. Instrum. 54 (1983) 897-899). Optical means are used for quick and reproducible alignment of this goniometer at Daresbury. Applications of the SST technique have included dynamical diffraction phenomena exhibited by nearly perfect crystals. Advantage has been taken of the polarized nature of synchrotron radiation to enable separate recording of the e and r polarization mode patterns of Pendellösung, stacking fault and Borrmann-Thomas fringes.

In order to obtain more wide knowledge on the perfection of natural beryl crystals, we have carried out an x-ray topographic study of more than ten faceted beryl gemstones collected from the region of Teófilo Otoni, Minas Gerais, Brazil. We have used a double crystal arrangement of non-parallel (+,-) and (+,+), setting, in most of the topographic work conducted. A highly asymmetric S(111) reflection was employed as monochromator with CuKα radiation (the angular spread of incident beam is estimated to be 1.5 sec. of arc).

11.1-4 X-RAY TOPOGRAPHIC STUDY OF BRAZILIAN NATURAL BERYL CRYSTALS. By C. K. Suzuki, Y. Koishi and J. Yoshimura, Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, 13.100 - Campinas, SP, Brazil.

Transparent and perfect beryl crystals have a high potentiality for synchrotron radiation monochromator in the wavelength region of the order of 10 Å. Previous observations of natural beryl (e.g., Scandale et al., J. Appl. Cryst. 12 (1979) 70-83) reveal a quite perfect structure with various types of growth defects: macroscopic channels, dislocations, inclusions, growth bands, and growth sector regions occupy a large volume fraction (over 10%). In order to obtain more wide knowledge on the perfection of natural beryl crystals, we have carried out an x-ray topographic study of more than ten faceted beryl gemstones collected from the region of Teófilo Otoni, Minas Gerais, Brazil. We have used a double crystal arrangement of non-parallel (+,-) and (+,+), setting, in most of the topographic work conducted. A highly asymmetric S(111) reflection was employed as monochromator with CuKα radiation (the angular spread of incident beam is estimated to be 1.5 sec. of arc).

Among the samples examined, we could find some crystals of considerably high perfection, which contain no channels and very few dislocations, and present a good homogeneity (Fig. 1). Unlike the crystals examined by Scandale et al., in the majority of the present samples, prismatic growth regions occupy a large volume fraction, and pyramidal growth regions have only a small volume. Topographs of plates cut parallel to the c-axis with diffraction vector per-