to select the spots belonging to each orientation,
to infer the relative orientations.

In order to characterize as-cast or deformed dendritic specimens, a Scanning X-ray Microbeam Diffractometer (SXMD) has been developed. In this technique the specimen is attached to a four-circle goniometer and analyzed in back-reflection. With a special goniometer setting, the specimen surface can be translated with respect to the X-ray beam without changing the diffraction conditions. The microbeam (diameter ~100 µm) allows selection of a small area while decreasing the beam divergence (>3° of arc). The irradiated zone can be directly viewed with a laser beam directed through the X-ray pinhole system using a set of adjustable mirrors. Lattice orientation and diffraction line profiles within individual dendrites were measured by SXMD over areas of approximately 2 mm². Such mappings were directly correlated with optical micrographs and Berg-Barrett topographs, the latter being recorded on the same apparatus.

*

*) This project is supported by the Swiss National Foundation for Scientific Research

16.7-1

TIME-RESOLVED STRUCTURE ANALYSIS BY A REPETITION-PULSED X-RAY DEVICE. By H. Terachi, T. Minato, A. Hichijo, K. Sakuoe and S. Iida, Department of Physics, Kwansei-Gakuin University, Nishinomiya 662, Japan.

X-ray diffraction techniques have so far been applied mainly to static measurements, where the specimen is kept in thermal equilibrium. There is, however, an increasing interest in the time-dependent structure developed after the system is brought into a non-equilibrium state. Thus, the system is simple, robust and easy-to-operate both at room temperature and at cryogenic temperatures. Furthermore, the use of a closed cycle refrigerator makes the system more economical than comparable cryocooler systems which are based on flow cryocyls. The centering unit will be on display at the Congress.

16.7-2

SURFACE ANALYSIS BY X-RAY MICROBEAM DIFFRACTION*. By M. Rappaz, M. Kaspar and E. Blank, Materials Department, Swiss Federal Institute of Technology (EPFL).

Microstructural features in the size range from approximately 20 µm to 1 mm are frequently encountered in materials science (e.g. phases distribution in cast alloys, plastic zones at crack tips, etc.). Existing diffraction techniques do not match very well with this size range: while electron diffraction in TEM applies to areas smaller than 10 µm, standard X-ray techniques, apart from topography, normally average over microstructural inhomogeneities.

In order to characterize as-cast or deformed dendritic specimens, a Scanning X-ray Microbeam Diffractometer (SXMD) has been developed. In this technique the specimen is attached to a four-circle goniometer and analyzed in back-reflection. With a special goniometer setting, the specimen surface can be translated with respect to the X-ray beam without changing the diffraction conditions. The microbeam (diameter ~100 µm) allows selection of a small area while decreasing the beam divergence (>3° of arc). The irradiated zone can be directly viewed with a laser beam directed through the X-ray pinhole system using a set of adjustable mirrors. Lattice orientation and diffraction line profiles within individual dendrites were measured by SXMD over areas of approximately 2 mm². Such mappings were directly correlated with optical micrographs and Berg-Barrett topographs, the latter being recorded on the same apparatus.

*) This project is supported by the Swiss National Foundation for Scientific Research

16.7-3

USE OF TEXTURE GONIOMETRY FOR THE AUTOMATIC DETERMINATION OF A LIMITED SET OF ORIEN­TATIONS. L. F. Magyd, J. J. Heizmann, Centre d'Etude des Textures, Laboratoire de Métallurgie Structurale, Faculté des Sciences, Ile du Saulcy, 57045 METZ (FRANCE).

The determination of the relative orientations between crystals and between non-similar phases is important to understand the mechanisms of the evolution of materials (crystal growth, topotaxy, deformation and transformation of unit cells ...). The crystal orientations are generally found by means of X-ray or electron diffraction, but the procedure soon becomes complicated when several orientations are present.

We propose a method which allows to find the orientations by texture goniometry and computing. In the case of a small number of orientations, the complete or incomplete pole figure shows a limited number of spots. Some of the spots belong to the same orientation.

The automatic treatment allows
1- to select the spots belonging to each orientation,
2- to determine each orientation,
3- to infer the relative orientations.

The method is illustrated by several examples:
- the growth of Al-Al, Cu oriented eutectics
- a topotactic reaction showing the relative orientations of Fe₃O₄ and of FeO, resulting from the chemical reaction.