A computer system, based on a 280A microprocessor, with cartridge disc (15 MByte), cartridge tape back-up, six terminals and two printers has been installed in the Chester office of the IUCr. Its main uses are to handle the accounts of the Union and the journal production records for Acta Crystallographica and Journal of Applied Crystallography, to check for submission of duplicate structures and for resubmission of papers rejected by other Co-editors, and to produce the indexes for the journals. It is expected that both annual and quinquennial indexes will be produced far more quickly than with traditional methods and at a much lower cost to the Union. An investigation is also being carried out on the existing crystallographic data base. Programs have been specially written (in Basic) to carry out the above functions and the system is menu-driven so that much of the work can be done with minimal training. The indexing and duplication detection routines will be described and possible further future applications considered.

Two basic rules: for authors, present original work free from errors; for editors, make no changes without authors permission. Avoid the laboratory notebook. It will be feasible to take the checking of crystal structures a stage further by interacting with the existing crystallographic data bases. Programs have been specially written (in Basic) to carry out the above functions and the system is menu-driven so that much of the work can be done with minimal training. The indexing and duplication detection routines will be described and possible further future applications considered.

The presence structure should emulate the style of early Hemingway rather than late Henry James. At the end of the writing, scrutinize every word and remove if not necessary. Remove or replace any words which do not have a precise meaning.

Acta C. These are depositions of crystal structure data, rather than scientific papers. Editors and referees require the full experimental data to verify the conclusions, but I question the necessity to publish them. I favor abstracts only, with concurrent entries into the appropriate Crystallographic Data File. This would advance the access by computer to these data by twelve months.

The majority of the students in science will never become specialists in crystallography. But many will need some notions of atomic structure of matter in their professional life. What will be useful is not the elements of crystallography, but important results, sometimes quite recent.

A course, adequate for non-specialists, is necessarily short; it cannot be neither a summary nor simply the beginning of a traditional crystallography course. One must abandon a strictly deductive approach; some fundamental ideas are presented without demonstration; many too specialised chapters of usual text-books must be suppressed but the implications of the crystallographic models in various techniques or sciences may be more developed.

For the beginners, two points are essential: the atomic radii or the covalent bonds and the separation between disordered and ordered states of matter. What is important is not the description of various types of order but the consequences of order upon the physical properties.

For future physicists, the concept of symmetry which appears in so many domains, may well be explained with crystallographic examples. For material science, the important point is the understanding of the crystalline defects and of their role.

Such courses, although elementary, demand a great effort to the professor. If he has been educated as a crystallographer, he must avoid to be too specialised, and if he is not, he has to extract what is essential from too complicated books: in fact, few books have been written to help him in this difficult task.