The radial distribution function (rdf) of
MOO$_3$-P$_2$O$_5$ glass system with the use of
dopants and without have been determined
from x-ray diffraction. The rdf peaks are
assigned as corresponding to P-O, MO-O,
(O-O)$_P$ and (O-O)$_MO$ distances.
Correspondingly the coordination numbers
under the peaks have also been determined.
On the basis of the rdf studies the authors
infer the glass structure of the compounds
as corresponding to tetrahedral configuration
for both the cations and there are a
certain number of non-bridged Oxygen ions
which are mutually arranged in tetrahedral
configuration around unoccupied holes. The
Oxygen tetrahedra are sharing only corners
and not edges or faces. The use of 5%
dopents(Mn$^{2+}$ or Co$^{2+}$) replacing MO$^{2+}$ leads
to a more unfold type of structures.

22.3-4 Ultrastuctural and Analytical Studies of
Amorphous Calcium Phosphates, Pyrophosphates
and Phosphate-Pyrophosphate Complexes
M.D. Grynpas and K.P.H. Pritzker; Mount Sinai
Hospital University of Toronto, Toronto, Canada.

Amorphous calcium phosphate (ACP) is a long
standing controversial subject in biomineralization
processes, especially new bone formation. Although
Grynpas et al. (J. Met. Soc. 19:723, 1984) have shown by x-
diffraction radial distribution function (rdf) that
there is no detectable amount of ACP in either embryonic or
mature bone (<1%), the possible role of ACP as a labile
intermediate transforming rapidly into impure poorly
crystalline calcium apatite as found in bones cannot be
ruled out. Moreover ACP has been suggested to be present
in intracellular and extracellular (in lower species only)
calcium deposits suggesting that ACP may be stabilized by
some ambient agents including Mg$^{2+}$, pyrophosphate (PPI)
and glycosaminoglycans.
PPI has been found by Cheng and Pritzker (J.
Rheumatol. 18:769, 1983) to be especially potent in
inhibiting the ACP-apatite transformation. Also Mg$^{2+}$
ions inhibit this transformation by competing with Ca$^{2+}$
and retarding crystallization. In a set of solutions
containing orthophosphate (P) and PPI as well as Ca$^{2+}$,
Mg$^{2+}$, Na$^+$, Cl$^-$ in concentrations similar to in vivo values,
the stable solid products formed were (A) mixtures of
monoclinic and triclinic calcium pyrophosphate dihydrate
(CPPD-MT), (B) precipitates amorphous to x-ray
diffraction, (C) calcium apatite crystals, depending on
the solution P/PPI values: 3, 3-180, >100 respectively.
This predicts calcium apatite bone in a high P/PPI
environment and calcified articular cartilage and intervertebral discs form CPPD-MT crystals in a low
P/PPI environment.

When studied by transmission electron microscopy,
precipitates (B) do not give any crystalline forms nor
electron diffraction patterns. Precipitates (B) when
aired-dried show morphology consisting of spheroids with
electron lucent centers. (Fig. 1) similar to that of ACP as
reported by Weber et al. (Arch. Biochem. 120:723, 1967).
However, when dehydrated through graded alcohols, they
show a very different morphology consisting of extremely
fine particles with diameters as small as 1 nm (Fig. 2),
suggesting that precipitates (B) are truly amorphous.
However, the confirmation of the amorphous structure of
precipitates (B) awaits our RDF studies now being
undertaken.
Precipitates (B) have been tentatively assigned to
be ACP, amorphous calcium pyrophosphate (ACP-P), amorphous
calcium pyrophosphate-phosphate complexes (ACP-P)
according to their Ca/P ratios (close to 1.5, close to 1.6,
in between, respectively) which vary with by
physical chemical parameters. However, spectroscopic and chemical
studies are underway to quantify the amounts of Ca$^{2+}$, Mg$^{2+}$, P and PPI in the
three groups.

While both intra- and extracellular ionic Ca$^{2+}$
concentrations in vivo are highly regulated, those of
Mg$^{2+}$, PPI, and P are subject to wide fluctuations. As
the solid phase formation is closely related to the ambient
ion concentrations, the clarification of the
interrelationships of crystalline and amorphous calcium
phosphates and pyrophosphates, Ca/P and P/PPI ratios
and other physical chemical parameters will provide insight
into the conditions in which physiologic and pathologic
calcifications form.