
Let G be a space group and $x_0 \in \mathbb{R}^3$ an arbitrary point. For example, x_0 might be the position of an atom of a crystal with symmetry group G. The set of points $Gx_0 = \{g(x_0); g \in G\}$ obtained by applying the symmetries of G to x_0 has been given various names: 'point configuration', 'crystallographic orbit' and even 'lattice complex' although Gx_0 is not necessarily a lattice. In more recent work, most significantly the series of papers by W. Fischer & E. Koch, the name 'lattice complex' is used instead for a class of sets Gx_0 arising from a natural equivalence relation that stems from the classification of space groups into 219 (or 230) space-group types. Each point of Gx_0 corresponds to a coset of the subgroup $S(x_0)$ of G called the site-symmetry group of x_0; this is just the set of all symmetries in G that keep the point x_0 fixed.

Now forget the original space group G and consider the set Gx_0 in its own right. Its symmetries form a space group E and again there is a subgroup $S_E(x_0)$ of those symmetries that do not move the point x_0. In fact, G is a subgroup of E and its index in E coincides with the index, which is necessarily finite, of the subgroup $S_E(x_0)$ in $S_E(x_0)$. Even the lattices of the two space groups need not coincide: the lattice of E is a 'superlattice' of the lattice of G (i.e. it contains additional points in general).

Previous work concentrated mainly on the case where E coincides with G and on choosing a single representative Gx_0 for all points x_0 sharing the same Wyckoff position [i.e. with conjugate subgroups $S_E(x_0)$]. It is this work that is reflected in International Tables for Crystallography published in 1983. The present volume is intended as an addition to Vol. A of International Tables for Crystallography. It gives a complete listing, for each of the 230 space-group types and for each possible position of x_0, of the corresponding groups E and $S_E(x_0)$. Conversely they can be used to search from what possible space groups G an observed symmetry group E might have arisen. There is also a summary table of the different superlattices that can arise in each crystal system. Applications are foreseen to extinction rules, phase transitions and structure determination.

There are brief explanations of the mathematics lying behind the tables, and an even briefer historical note, which cannot do justice to the rather complicated development of these topics.

R. L. E. SCHWARZENBERGER

Department of Science Education
University of Warwick
Coventry CV4 7AL
England