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Abstract 
An automated procedure for locating the positions 
of heavy atoms in crystals of macromolecules has 
been developed. The method is simple to apply, is 
independent of space group, and permits inclusion 
of non-crystallographic symmetry. The procedure is 
a search of the difference Patterson function; a trial 
solution consisting of a set of heavy-atom sites is 
considered likely to be correct only if the correspond- 
ing 'minimum function' (the minimum value of the 
difference Patterson function at the self- and cross- 
vector positions for this group of sites) is large. 
Although the method may be used to search for 
'single-site' solutions to the difference Patterson func- 
tion, it is more effectively used to search for pairs of 
sites unrelated by crystallographic symmetry. In the 
latter case the number of predicted cross vectors for 
each trial solution is larger, and correct solutions may 
be more readily distinguished from incorrect ones. 
Because of noise in difference Patterson functions, it 
is helpful in evaluating the solutions obtained to 
calculate the probability that a given value of the 
minimum function might occur by chance. The 
method has been applied to nine difference Patterson 
functions for which solutions were known. In eight 
of these cases, including several which had resisted 
earlier attempts at interpretation, this procedure 
yielded at least half of the known sites. 

Introduction 
A crucial and often difficult step in the multiple 
isomorphous replacement method is the determina- 
tion of the positions of heavy atoms in a crystal. The 
procedure most commonly used for this is inspection 
of a difference Patterson function (see Blundell & 
Johnson, 1976, for example). Unless there are only a 
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few major heavy-atom sites in the asymmetric unit of 
a crystal, however, interpretation of a difference 
Patterson function may be difficult. This is due partly 
to the complexity of a Patterson function for many 
atomic sites. It is also due to a more subtle factor. 
Difference Patterson functions have an intrinsic level 
of noise that is roughly proportional to the number 
of heavy-atom sites. In contrast, the value of the 
difference Patterson function at points corresponding 
to vectors between heavy-atom sites is independent of 
the number of sites. As the number of heavy atoms 
increases, then, the noise level in a difference 
Patterson function increases, while the signal remains 
the same. 

When interpreting difference Patterson functions 
for more than a few heavy-atom sites, the low ratio 
of signal to noise leads to two related problems. First, 
because there are many peaks in the difference Patter- 
son function, many must be screened to find the one 
set corresponding to a correct solution. Second, dis- 
crimination of correct solutions from incorrect 
solutions based on spurious peaks may present 
substantial problems. 

Single-site search procedures 
The multiple-peak difficulty may be substantially 
reduced by using automated heavy-atom search tech- 
niques (Argos & Rossmann, 1976). The following 
single-site search is the basis of all our search 
methods. 

The search is based on a 'minimum function', 
similar to that suggested by Buerger (1970). Given a 
trial set of atomic sites, all interatomic vectors may 
be calculated. If the trial solution is indeed a subset 
of the true structure, the difference Patterson function 
should usually have large values p(ui) at all of the 
predicted interatomic vectors ui. We show below that 
the noise level cr(ui) at a predicted vector u~ in a 
difference Patterson function can be estimated from 
the overall r.m.s, value of this function. A measure 
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of the correspondence between a given trial set and 
the observed difference Patterson function is the 
smallest value of the ratio R~ = p(n)/o'(n~) evaluated 
at the various predicted interatomic vectors for the 
Set. A high minimum value indicates a good fit of the 
trial set to the difference Patterson function. 

This approach, however, yields no measure of the 
likelihood that a given solution is based on spurious 
peaks in the difference Patterson function. Some addi- 
tional information is required in order to do this. 

Identification of trial solutions unlikely to be due to 
spurious peaks in the difference Patterson function 

One method of identifying solutions likely to be cor- 
rect is to assess, for each trial solution, the probability 
that a solution with its associated value of the 
minimum function (or higher) can occur by chance. 
If such an event is very unlikely then we may be 
confident that this solution is not based on 'noise' 
peaks in the difference Patterson function. 

In the case of a single-atom search, the probability 
of finding, by chance, a trial solution with a given 
value R of the minimum function can be calculated 
in the following manner. Suppose the r.m.s, noise as 
a function of position in a difference Patterson func- 
tion, o'(u~), is known. First set up a grid of trial points 
in the asymmetric unit of the crystal; each of these 
trial points is to be tested as a potential single-site 
solution to the difference Patterson function. Then 
we may calculate the probability P that, purely by 
chance, at least one of these test points will have a 
corresponding value of the minimum function at least 
as large as, say, Ro. It is simplest to do this by first 
calculating the probability that all of the trial points 
will have a value of the minimum function less than 
Ro. 

Consider a particular test point x. This point in the 
real cell is associated with, say, M unique self vectors 
(ui, i = 1, M),  where we exclude the origin. The proba- 
bility Po that the ratio Ri = p(u~)/o-(u) at a particular 
self vector u will, by chance, be at least equal to R 
is given by the error function: 

Po=27r -1/2 ~ exp(-s2/2)ds. (1) 
Ro 

Then the probability that the ratio Ri will be at least 
equal to Ro for all M Harker vectors is P0 raised to 
the power M. That is, the probability that, by chance, 
a particular test point x will be associated with a value 
of the minimum function at least as large as Ro is 
equal to Po M. 

In this search procedure, many test points x~ will 
be considered as trial solutions. If N well separated 
positions are examined, the probability P that at least 
one of these is associated, by chance alone, with a 
value of the minimum function at least as large as Ro 

can be calculated, assuming that all N tests are 
statistically independent. This yields 

P= l - ( 1 -  PoM) N. (2) 

If a finer grid is used so that N is very large, (2) 
is not strictly applicable. Consider two test points 
which are close together compared with the effective 
resolution of the difference Patterson function. The 
Harker vectors u~ associated with these two test points 
will be nearly identical, so that the values of the 
minimum function at these two points will be essen- 
tially equal. Therefore the probability P of finding a 
point x associated with a large value of the minimum 
function does not, as (2) would predict, increase to 
unity as the number of grid points in the search is 
increased indefinitely. In fact, once all the self vectors 
corresponding to adjacent points on the search grid 
are separated by much less than the effective reso- 
lution of the difference Patterson function, increasing 
the number of grid points can be expected to affect 
P only negligibly. We suggest that when a very fine 
search grid is used, an appropriate value of N to use 
in (2) is the maximum number of points in the asym- 
metric unit of the crystal such that no two of these 
points are associated with the same set of self vectors, 
within the resolution of the difference Patterson 
function. 

The effective resolution of a difference Patterson 
function is not necessarily the limit of resolution of 
the data used to calculate it, because the intensities 
of reflections often decrease rapidly with increasing 
resolution. Perhaps a more realistic estimate of the 
resolution is the typical separation between maxima 
and minima in this function. Accordingly, we estimate 
the effective resolution of a difference Patterson func- 
tion by dividing the volume of the asymmetric unit 
of this function by the number of local maxima and 
minima within the asymmetric unit. The length of an 
edge of a cube with this volume is taken to be the 
effective resolution. 

The number of self vectors M associated with each 
trial point, the effective number N of trial points 
examined in a given search, and the noise level tr(u) 
(see below) are in general simple to estimate and are 
essentially fixed for a particular difference Patterson 
function. Consequently, (1) and (2) may readily be 
used to evaluate potential solutions. A trial solution 
associated with a value Ro of the minimum function 
is likely to be correct if the probability [P, given in 
(2)] of obtaining this value by chance is small (e.g. 
P < 0 . 0 5 ) .  

Occasionally some of the self vectors u~ associated 
with a trial point may lie close to one another. In this 
case, it is necessary to have a criterion for determining 
whether the values of the difference Patterson func- 
tion at these points are necessarily similar. We assume 
that two vectors are associated with independent 
values of the difference Patterson function if they are 
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separated by more than one unit of the grid used to 
calculate the function. 

Increasing the number of vectors predicted in 
the difference Patterson function for each 

trial point in a search 

As shown by (2), the probability of finding an 
incorrect solution which has M cross vectors and a 
value of the minimum function greater than or equal 
to Ro decreases very rapidly with increasing values 
of M. That is, the greater the number of peaks which 
must be present in the difference Patterson function 
before a trial solution is accepted, the less the likeli- 
hood of accepting an incorrect one. Consequently 
any factor that increases M (without greatly increas- 
ing N) will lead to an increased sensitivity in the 
search procedure. 

I. Non-crystallographic symmetry 

M increases if it is possible to include non-crys- 
tallographic symmetry in calculating 'equivalent' sites 
in the unit cell (Argos & Rossmann, 1976). If crys- 
tallographic and non-crystallographic symmetry are 
both included, M will increase from Nequiv-1 to 
N n o n N e q u i  v - 1, where Nequi  v is the number of positions 
equivalent by space-group symmetry in the unit cell, 
excluding centering, and Nnon is the number of posi- 
tions equivalent by non-crystallographic symmetry 
alone in the unit cell, excluding any pseudo-centering. 
Non-crystallographic symmetry does not generally 
affect N. 

II. Searches for pairs of sites 

A second way to increase M, the number of distinct 
vectors in the difference Patterson function associated 
with each trial position in a search for heavy-atom 
sites, is to search for pairs of sites related by a fixed 
cross vector y. Given y and the position of one trial 
site Xl, the second site is located at X 2 = X l W y .  

A search, similar to those described above, may be 
carried out. The value associated with each point xl 
is the minimum function at (a) the self vectors associ- 
ated with the points Xl and x2 = Xl +y,  and (b) all the 
cross vectors between positions equivalent to Xl and 
those equivalent to x2. Excluding the cross vector y 
which is common to all the points in the search, this 
generally yields M = 3Nequi v -  3 vectors predicted in 
the difference Patterson function for each test point. 

In principle, it is necessary to carry out a search 
over both Xl and y in order to examine all possible 
pairs of sites. This very impractical search is not 
necessary, because a pair of sites x~ and x 2 : X 1 + y  is 
unlikely to correspond to a correct solution unless 
the difference Patterson function is reasonably large 
at the cross vector y = x2-x l .  A very useful search 
procedure, then, is (a) to locate the isolated peaks 

in the difference Patterson function, some of which 
are likely to correspond to cross vectors between sites, 
and (b) to use the coordinates of each of these peaks, 
one at a time, as trial cross vectors y in a two-site 
search. Any solutions obtained may be evaluated, as 
before, on the basis of the probability of finding such 
a solution by chance. 

The value of N in (2) for a two-site search may be 
estimated by analogy with the procedure used in a 
single-site search: N is the maximum number of 
points in the asymmetric unit of the crystal such that 
no two of these points are associated with the same 
set of self and cross vectors, within the effective 
resolution of the difference Patterson function. 

Locating additional heavy-atom sites given 
a partial solution 

Once a partial solution to a difference Patterson func- 
tion has been obtained, a simple search may be carried 
out to locate additional sites, one at a time. At each 
trial position for a new site, the minimum function 
at the associated self vectors and at the cross vectors 
with the 'known' sites is recorded. The position with 
the largest value of this function is considered as a 
potential additional site. As before, the probability 
of finding an incorrect trial site with this value of the 
minimum function may be evaluated, and if it is 
sufficiently unlikely, the additional site may be added 
to the list of 'known' sites. 

'Noise' in difference Patterson functions 

Difference Patterson functions contain a considerable 
amount of what might be called 'noise', at least from 
the point of view of determining the locations of 
heavy-atom sites in the crystals. This noise is partly 
due to errors in measurement and scaling of native 
and derivative structure-factor amplitudes and to 
non-isomorphism between native and derivative 
structures. More important is that, for acentric reflec- 
tions, the magnitude of the difference between native 
and derivative structure-factor amplitudes is not in 
general equal to the heavy-atom structure-factor 
amplitude (Blundell & Johnson, 1976). This intro- 
duces a high intrinsic noise level in all difference 
Patterson functions calculated from acentric diffrac- 
tion data. The purpose of this section is to show that, 
in most cases, the r.m.s, value of this 'noise' in a 
region of a difference Patterson function is very 
similar to the r.m.s, value of the difference Patterson 
function itself in this region. 

In the discussion below, we ignore the 'centric' 
reflections used to calculate difference Patterson func- 
tions, as there are generally few of them relative to 
the number of 'acentric' reflections. 

In order to estimate the 'noise' level in a difference 
Patterson function, notice that if the magnitude of 
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the true heavy-atom structure factorfn for a reflection 
h is small relative to the observed native structure- 
factor amplitude Fp, obs, if there is perfect isomorphism 
between native and derivative structures, and if there 
are no errors in measurement of native and derivative 
structure-factor amplitudes, we may write 

Fen - Fp "-- f H COS/3 (3) 

where/3 is the difference in phase angle between fH 
and the native structure factor. Then, using (3), we 
obtain an expression for the coefficients of a 
difference Patterson function: 

Ch~(FpH-Fp)2- f~cos2(fl) (4a) 

for each h, where the difference Patterson function 
p(u) is given by 

p(u) =~. Ch COS (27rh. u). (4b) 
h 

The term with h = (0, 0, 0) is not included here or 
elsewhere in this work. Notice that the true Patterson 
function for the heavy-atom sites is based on 
coefficients C h = f  2 .  Rearranging (4a) we obtain 

Ch~--fE/2+[COS 2 / 3 - - 1 / 2 ] f  2 .  (5) 

The first term on the right-hand side of (5) corre- 
sponds to the 'signal' in the difference Patterson func- 
tion; it is half the 'ideal' value of the signal ( f2 ) .  The 
second term, uncorrelated with the first, since 
[cos 2/3 - 1/2] has a mean value of zero and varies in 
a ' random' fashion, corresponds to the 'noise'. Using 
(4a) and (4b), we can deduce that the r.m.s, value 
of a difference Patterson function with M terms is 

Pr .m. s .  " "  M1/2((~H)I/2)(31/2/4) (6a) 

where the angle brackets indicate an average value 
and we have used the fact that (COS4/3)=3/8 for 
random angles/3. The r.m.s, values of the signal (S) 
and the 'noise'  (o-) in this function may be estimated 
in a similar fashion using the first and second terms 
on the right-hand side of (5) respectively, yielding: 

S r . m . s .  ~ Ml/2((f4H)l/2)(21/2/4 ) (6b) 

and 

O'r.m.s. ~ M1/2((f~H)l/2)(1/4 ). (6C) 

Therefore the ratio of signal to noise is Sr.m.s/Crrm.s. = 
21/2 and the ratio of the overall r.m.s, value of the 
difference Patterson function to the r.m.s, value of 
the noise is P r . m . s . / O ' r . m . s .  " "  3 1 / 2 .  The intrinsic 'noise' is 
entirely due to the fact that the phase-angle difference 
/3 is not always 0 or ~r. In the case where substantial 
errors in measurement of native and derivative struc- 
ture factors exist, or where some lack of isomorphism 
between native and derivative structures is present, 
trr.m.s, is even closer to Pr.m.s.. It therefore is never very 
incorrect to take the overall r.m.s, value of a difference 
Patterson function as an estimate of the overall r.m.s. 

error in this function. Notice that ( f2 )  and therefore 
o'r.m.s. (6c) is roughly proportional to the number of 
heavy-atom sites. 

The 'noise' level is not the same everywhere in the 
difference Patterson function, however. An analysis 
similar to that used to obtain (6c) may be used to 
show that this equation applies to zones within the 
asymmetric unit of the difference Patterson function 
as well as to overall values. The 'noise' level does, 
however, depend on the point symmetry of the posi- 
tion in the difference Patterson function. If the num- 
ber of elements in the point symmetry at a particular 
position is L, it may be shown that the r.m.s. 'noise' 
will be roughly L ~/2 times that at general positions. 
For example, at a position of mirror symmetry in a 
difference Patterson function, the r.m.s, noise is 1.4 
times that at general positions. 

Discussion 

The procedure we have followed when applying the 
methods described here is: (a) to carry out a search 
for single-site solutions to the difference Patterson 
function, noting solutions which are very unlikely to 
occur by chance (i.e. with a probability of less than 
0.05) and (b) to carry out searches for two-site solu- 
tions using each of one to 30 isolated peaks in the 
difference Patterson function as the fixed cross vector 
in these searches. If any two-site solutions found are 
very unlikely to have occurred by chance, a search 
for additional sites is carried out with these sites 
serving as starting point. These additional sites which 
are very unlikely to be due to chance are included in 
the reported solfition. If more than one solution was 
obtained using this procedure, only the solution 
which was least likely to be due to chance was con- 
sidered. No more than six sites were considered at a 
time. 

Table 1 summarizes the results of this procedure 
as applied to nine heavy-atom derivatives of four 
structures for which heavy-atom sites were known 
from earlier work. In eight of the nine cases, our 
procedure clearly identified at least half of the major 
sites in the known solution. These correctly identified 
sites were a r.m.s, distance of 1.5/~ from the corre- 
sponding known sites. In some cases, the solutions 
obtained contained additional sites which were con- 
sistent with the difference Patterson function. Three 
of the difference Patterson functions which were cor- 
rectly solved by the present methods had resisted 
earlier attempts at interpretation by inspection. 

Our procedure failed in one case, the samarium 
(Sm in Table 1, Kim et al., 1972) derivative of 
t RNAphe. Two solutions, each consisting of six atomic 
sites, were found which were very unlikely ( P <  
0.001) to have occurred by chance, yet which had no 
sites in common with the two reported sites (Kim et 
a/., 1972) obtained by difference Fourier analysis. In 
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Table 1. Applicat ion o f  search procedures to difference Patterson func t ions  with known  solutions 

Ribulose bisphosphate 
Crystal structure Melittin Monellin Yeast tRNAph e carboxylase 

Derivative Hg KI Au Pd Os Pt Sm Pt DMM 
Previously solved using 

difference Patterson? Yes No Yes No Yes No No Yes Not tried 
Number of known sites 1 5 2 4 1 3 2 1 4 
Number of correct sites found 

(present method) 1 5 2 2 1 2 0 1 3 
R.m.s. distances from known 

sites (.~,) 0.3 0.9 2.2 1.1 0.4 2.5 -- 2.9 0.7 
Number of additional 

sites found 0 1 3 0 0 1 6 1 1 
Computation time (min): 

FFT: 2 2 1 1 5 5 5 10 10 
search: 4 4 15 15 10 54 37 10 10 

Space group C2221 P21 P2~221 1422 
Unit cell dimensions (/~) 61 x 38 x 42 40 x 72 x 87 36 x 56 x 162 149 x 149 x 138 
Resolution (/~) 2.8 5.0 5.0 4-0 
Reference Terwilliger Tomlinson Kim, et al. Baker, Suh & 

& Eisenberg & Kim (1972) Eisenberg (1977) 
(1982) (1981) 

fact, our  procedure  could  not  have obta ined  the cor- 
rect solut ion in this case, as each of  the two sites in 
the known solut ion had  at least one associated self 
vector in a posi t ion on the difference Patterson func- 
t ion which has a value far below zero. We do not  
know if ei ther  solut ion obta ined by our  program 
consists of  correct minor  sites or if  they are complete ly  
incorrect.  

An impor tan t  feature of  the two-site search pro- 
cedure is that  it yields sets of  sites which, as a group,  
form a solut ion to the difference Patterson function.  
In contrast ,  a single-site search only yields a list of  
potent ia l  solut ions,  de termined only to within an 
"origin shift '  which depends  on the symmetry of  the 
structure. Crystal  structures with the symmetry of  
space group P222, for example,  have in general  eight 
non-equiva len t  posi t ions in the unit  cell, which share 
a given set o f  associated self vectors. The two-site 
search procedure  yields sets o f  sites which are all 
related to the same origin and are all part  of  the same 
enan t iomer  of  the true solution. 

Al though non-crys ta l lographic  symmetry opera- 
t ions were not  appl ied  in any of  the cases listed in 
Table 1, when local symmetry  is present and  has been 
character ized it may be readily appl ied in using any 
of  the methods  described here. 

The procedures  we have discussed here could also 
be appl ied  to Pat terson funct ions (as opposed  to 
difference Pat terson funct ions)  which are based on 
structures conta in ing  a small number  of  atoms of  
equal  size or a small number  of  heavy atoms along 
with many  smaller  atoms. In the case of  Pat terson 
funct ions which conta in  little 'noise ' ,  however,  it 
should  be no ted  that  the methods  described here for 
ident ifying the solut ions unl ikely  to be due to chance 
lose their  usefulness,  as near ly  all features of  the 
difference Pat terson funct ion  will cor respond to some 
element of  the true structure in question. 

Only a small amoun t  of  computa t ion  time is 

required to use the methods  described here; in the 
cases we have examined  so far, the t ime required to 
obtain  the solut ions listed in Table 1 was from one 
to four teen times that  required to calculated the asym- 
metric uni t  o f  the difference Patterson funct ion  using 
a fas t -Fourier- t ransform method  and a grid corre- 
sponding  to one- third  to one-sixth the resolut ion of  
the reflection data. We suggest that,  a l though one 
should  always visually examine a difference Patterson 
funct ion in order  to detect unusual  features such as 
local symmetries and unusual ly  shaped peaks,  the 
au tomated  procedures  described here may con- 
venient ly  be used as first at tempts to determine solu- 
t ions to compl ica ted  or simple difference Patterson 
functions,  ra ther  than  as a last resort. 

A For t ran  program ( H A S S P )  which incorporates  
the results described here may be obta ined from the 
Protein Data  Bank, Brookhaven  Nat ional  Labora-  
tory, Upton,  Long Island,  New York, 11973, USA. 

We t ha nk  W. Smith and  C. Ogata for the use of  
their  data  and  S. Ho lb rook  for useful comments .  
Suppor t  o f  USPHS N I H  GM 31299 and GM 29287 
are gratefully acknowledged.  
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