maxima. This result is not surprising because low l terms contribute a substantial portion of the whole Patterson function (after omitting the $l=0$ term) under the conditions of the test. However, as discussed in the article, these very low-l terms can hinder the true solution from showing up. This is clearly shown in Fig. 8, where the terms $l=2,4$ were omitted from the calculations. It is worth noticing that the two omitted terms contributed 86% of the Patterson squared norm.

References

Measurability of Bijvoet Differences in Triclinic, Monoclinic and Orthorhombic Crystals. II

BY K. SEKAR AND S. PARTHASARATHY

Department of Crystallography and Biophysics,* University of Madras, Guindy Campus, Madras–600 025, India

(Received 30 July 1986; accepted 2 April 1987)

Abstract

The probability that the Bijvoet ratio X for the observed reflections of a given crystal is greater than any particular value X_0 depends on space-group symmetry, the number of anomalous scatterers per asymmetric unit and the parameters k and σ^2. Numerical values for this probability are obtained as a function of X_0 for different values of k and σ^2 for the triclinic, monoclinic and orthorhombic crystals containing p ($=1,2,3$ or 4) anomalous scatterers per asymmetric unit. These results are provided in the form of compact tables; Fortran programs that are useful in computing this probability for any given situation are also provided.

1. Introduction

The success of the anomalous-scattering method of structure determination strongly depends on the measurability of Bijvoet differences. The measurability is defined as the probability of the event $\{(X \geq 0.1) \cap (y_{\text{min}} \geq 0.3)\}$ (Velurugan & Parthasarathy, 1984; VP, hereafter) where X is the Bijvoet ratio and y_{min} is the minimum value of the normalized structure-factor magnitudes for the reflection H and the inverse reflection \bar{H}. Owing to the importance of the anomalous-scattering method, particularly due to the advent of synchrotron radiation as a source for diffraction studies, it would be useful to know a priori, in the case of a given crystal, the percentage of observed reflections for which the Bijvoet ratio X would be greater than any specific value X_0, say. This information can be obtained from the probability value for the event $\{(X \geq X_0) \cap (y_{\text{min}} \geq 0.3)\}$ ($= D$, say) and we shall denote this probability by $M(X_0,0.3)$. The values of $M(X_0,0.3)$ for the particular case of $X_0=0.1$ were obtained in VP for the triclinic, monoclinic and orthorhombic crystals containing one or two heavy atoms per asymmetric unit for values of k (i.e. the ratio of the imaginary to the total real part of the atomic scattering factor of the anomalous scatterer) up to 0.6. Under a pronounced anomalous-scattering effect, k can have larger values for some of the heavy atoms. For example, the values

* Contribution No. 697.
2. Theoretical considerations

In this paper we shall follow the notation of VP. In particular, we shall use \(\sigma^2 \) to denote the fractional contribution to local mean intensity from the group of anomalous scatterers relative to the whole structure. We shall present the results corresponding to the non-centrosymmetric space-group categories 1, 3, 5 and 6 belonging to the triclinic, monoclinic and orthorhombic systems [see p. 59 of Lipson & Cohran (1966) for details of the space-group categories]. Since the theoretical expressions needed for the evaluation of \(M(X_0, 0.3) \) are available in VP, we shall give only the final expression needed for computing the numerical tables in this paper.

The theoretical expression for \(M(X_0, 0.3) \) in the case of a non-centrosymmetric crystal containing \(n \) atoms in the asymmetric unit of which \(p \) atoms are anomalous scatterers (of the same type) and the remaining \(q (= n - p) \) are normal scatterers of similar scattering power is known to be [see equation (42) of VP]

\[
M(X_0, 0.3) = Pr(D) = \int \cdots \int 2y_0 \exp (-y_0^2) \, d\tau \quad (1)
\]

where \(d\tau \) is a volume element in the \((3p+2)\)-dimensional Cartesian \((y_0, \psi_0, \theta_1', \phi_1', \psi_1', \ldots, \theta_p', \phi_p', \psi_p')\) space. Equation (1) is valid for the space-group categories 5 and 6. For crystals of space-group category 3, \(d\tau \) is the volume element in the \((2p+2)\)-dimensional \((y_0, \psi_0, \theta_1, \phi_1, \ldots, \theta_p, \phi_p)\) space. For crystals of space-group category 1, \(d\tau \) is the volume element in the \((p+2)\)-dimensional \((y_0, \psi_0, \theta_1, \ldots, \theta_p)\) space. Thus (1) involves \((p+2)\)-fold, \((2p+2)\)-fold, \((3p+2)\)-fold and \((3p+2)\)-fold integrals for the space-group categories 1, 3, 5 and 6 respectively. The theoretical expressions for \(X \) and \(y_{min} \) in terms of the random variables involved in (1) are given by [see equation (27) of VP]

\[
X = C_1E_py_0|\sin(2\pi\psi_0)|/[C_2E_p^2 + \sigma^2y_0^2]
+ C_3E_p\cos(2\pi\psi_0) \quad (2)
\]

\[
y_{min} = \{\min [a + b(\cos 2\pi\psi_0 + k \sin 2\pi\psi_0),
\quad a + b(\cos 2\pi\psi_0 - k \sin 2\pi\psi_0)]\}^{1/2} \quad (3)
\]

where \(a \) and \(b \) are defined to be

\[
a = C_4E_p^2/(\sigma p) + C_5y_0^2, \quad b = C_6E_py_0/(\sigma p)^{1/2}.
\]

The quantities \(C_n \), \(n = 1 \) to 6, depend on \(k, \sigma^2 \) and \(p \) and these are defined in equations (29) and (35) of VP. \(E_p \) is defined to be [see equation (22) of VP]

\[
E = \left\{ \sum_{j=1}^{p} \xi_{np}(\theta_j', \phi_j', \psi_j') \right\}^2 + \left[\sum_{j=1}^{p} \eta_{np}(\theta_j', \phi_j', \psi_j') \right]^{1/2}. \quad (4)
\]

3. Discussion

The multiple integrals in (1) for the various space-group categories are to be computed by the Monte Carlo method for different values of \(X_0, p, k \) and \(\sigma^2 \). The results obtained for the space-group categories 1, 3, 5 and 6 corresponding to \(p = 1, 2, 3, 4 \) are given in Tables 1 to 16.* These tables contain the values of \(M(X_0, 0.3) \) corresponding to \(\sigma^2 = 0.02, 0.05, 0.10, 0.15, 0.20, 0.30, 0.40 \) and 0.50 and \(k = 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.40, 0.60, 0.80 \) and 0.90. Tables 1–4 are for space-group category 1 and pertain to the cases \(p = 1, 2, 3, 4 \) respectively. Tables 5–8 are for space-group category 3 and pertain to the cases \(p = 1, 2, 3, 4 \) respectively. Tables 9–12 are for space-group category 5 and pertain to the cases \(p = 1, 2, 3, 4 \) respectively. Tables 13–16 are for space-group category 6 and pertain to the cases \(p = 1, 2, 3, 4 \) respectively.

The variation of \(M(X_0, 0.3) \) as a function of \(X_0 \) is shown in Fig. 1 for the space-group category 5 corresponding to the following typical situation: \(p = 1, \sigma^2 = 0.10 \) and \(k = 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.40, 0.60, 0.80 \) and 0.90. The ordinate corresponding to \(X_0 = 0 \) for any curve represents the probability of the event \(\{X \geq 0\} \cap \{y_{min} \geq 0.3\} \) and this event is equivalent to the event \(\{y_{min} \geq 0.3\} \) (= \(D_0 \), say) since all the reflections satisfy the trivial condition that \(X \geq 0 \). Though the probability for the event \(D_0 \) is a

* Tables 1 to 16 have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 43890 (24 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.
function of \(k \) and \(\sigma^2_0 \), it is found to be insensitive to changes in \(k \) and \(\sigma^2_0 \). For example, the values of \(P_r(D_0) \) (corresponding to \(k = 0.05 \)) are found to be 0.907 and 0.902 when \(\sigma^2_0 = 0.05 \) and 0.30 respectively and the values of \(P_r(D_0) \) (corresponding to \(\sigma^2_0 = 0.05 \)) are found to be 0.907 and 0.852 for \(k = 0.05 \) and 0.90 respectively. It is seen from Fig. 1 that the curves for \(M \) fall steeply to zero when \(k \) is small. For larger values of \(k \), the curves fall relatively slowly. Thus, while it is hardly possible to find any reflection having a Bijvoet ratio greater than 0.25 when \(k = 0.05 \), more than 61\% of reflections would have a Bijvoet ratio greater than 0.25 when \(k = 0.9 \). Curves for other values of \(k \), \(\sigma^2_0 \) and \(\rho \) and for other space-group categories exhibit similar trends and hence are not shown. Since \(M \) varies differently in the different regions of \(\sigma^2_0 \) and \(k \), values of \(M \) are given in Tables 1-16 at convenient unequal intervals of \(X_0 \).

In connection with the theoretical evaluation of \(M(X_0, 0.3) \) for any given \(X_0 \) for a particular crystal, the following points may be noted. Since \(M \) is a function of \(k \) and \(\sigma^2_0 \) and since these are, in turn, functions of \((\sin \theta)/\lambda\), it follows that \(M \) will also be a function of \((\sin \theta)/\lambda\). Hence it is necessary to obtain an average value of \(M \) (\(\langle M \rangle \), say) for the crystal. \(\langle M \rangle \) for a particular crystal can be obtained from the local values of \(M \) by giving weights proportional to the relative number of reflections in the various ranges of \((\sin \theta)/\lambda\). It can easily be shown that

\[
\langle M \rangle = \frac{3}{S_{\text{max}}^3} \int_0^{S_{\text{max}}} Ms^2 \, ds,
\]

where \(s \) stands for \((\sin \theta)/\lambda\) and \(S_{\text{max}} \) is the maximum value of \((\sin \theta)/\lambda\) for the data. The value of \(\langle M \rangle \) for any situation (i.e. for given crystal, radiation and data) is to be obtained by carrying out the integration in (5) numerically. The values of \(M \) needed for the numerical integration can be obtained from the appropriate table of values of \(M \) by interpolation. Reasonably good values of \(\langle M \rangle \) can be obtained by employing the following simpler procedure: (i) Obtain the mean values of \(k \) and \(\sigma^2_0 \) for the data. (ii) Use these mean values to compute the value of \(\langle M \rangle \) from the appropriate deposited table by a two-dimensional interpolation method (Abramowitz & Stegun, 1965). Fortran programs for calculating the value of \(\langle M(X_0, 0.3) \rangle \) corresponding to any fixed \(X_0 \) for a given crystal by this method are also available as deposited material.*

The authors are grateful to the Council of Scientific and Industrial Research for financial support.

* See deposition footnote.

References

