05.1-10 CONFORMATIONAL ORDERING IN TETRAHEDRAL ZWEIER SINGLE CHAINS: FOUR SUCCESSIVE PHASE TRANSITIONS IN KPO₃. By <u>W.W. Schmahi</u>, Mineralogisches Institut der Universität Kiel, West Germany.

Zweier single chains of (corner linked) identical rigid tetrahedra have 3 conformational degrees of freedom. All conformations may be derived from the chain of aristo-type symmetry (line group 2₁/mmg, Fig.1) by variation of 3 parameters, such as φ , τ_1 and τ_2 (Fig. 2). These parameters are defined in a way to reflect the symmetry of the chain. The aristotype symmetry with $\varphi = \tau_1 = \tau_2 = 0$ may only exist as a space and time average because of the non-zero thermal displacements at any temperature. The phase transitions of potassiumpolyphosphate, KPO_3 , illustrate several ways of conformational ordering reducing the chain symmetry. The evolution and interaction of the ordering mechanisms was monitored by DSC, bire-fringence measurements and single crystal diffractome-try. From the melt the phase KPO₃-HT crystallizes at 1111 K with space group Bbmm corresponding to the aristotype symmetry of the phosphate zweier single chains which run parallel to <u>b</u>. However, large statistical dis-placements from a symmetric arrangement lead to "split" atomic positions (JOST & SCHULZE, Acta Cryst., 1971, 1345-1369). On cooling this phase transforms at 922 B27, K to KPO3-H, Pbnm, due to antiferro-type ordering of the parameter φ in neighbouring chains. The mirror planes perpendicular to the chain are lost, but there is still a mirror plane parallel to the chain, i.e. a mirror plane parallel to the chain, i.e. $\langle \tau_i \rangle = \langle \tau_i \rangle = 0$. At a second phase transition at 768 K additional ordering with respect to the au-type degrees of freedom sets in. In this third phase (KPO3-H', P21212) the chains are characterised by $\langle \varphi \rangle \neq 0$, $\langle \tau_1 = \tau_2 \rangle \neq 0$, and chain-symmetry 2₁. On further cooling the $\tau_1 = \tau_2 \gamma = 0$, and ring scheme of the H'-phase breaks down at 724 K by a first order transition to an ordering with $\tau_1 \neq \tau_2$. The paraphase of this phase, KPO_3 -2, $P2_1/n$, is the H-phase. The $\overline{\varphi}$ -ordering pattern is still preserved but no conformational symmetry except the repeat period is kept . However, the distortion corresponding to the new $\tau_{1} \neq$ ${\mathcal T}_2$ -ordering mechanism creates a monoclinic shear strain which makes the existing φ -ordering pattern unstable with respect to a more complicated antiferro-type ordering pattern of the parameter φ . Thus there is another first order transition at 524 K to the phase KPO₃-T, $P2_1/a$, where a new φ -ordering pattern is created while the T-ordering mechanism characterizing the Z-phase continues without substantial change. The paraphase of KPO3-T is KPO3-HT.

05.1-11 ELECTRON DIFFRACTION STUDIES OF MIXED VALENCE HOLLANDITES AND STRUCTURAL TRANSITION IN CSTI₈O₁₆. By <u>J.L. Hodeau</u>, E. Fanchon, J. Vicat, P. Strobel and J.A. Watts*, Laboratoire de Cristallographie, associé à l'U.S.T.M.G., C.N.R.S., 166 X, 38042 Grenoble Cedex (France). *Division of Mineral Chemistry, C.S.I.R.O., Melbourne, Australia.

Hollandite type phases $A_x(B,B')_8O_{16}$ with mixed valence framework cations (B and B' are the same atoms with different valencies) are useful materials for the study of inter- and intratunnel A-vacancy ordering, because there is no B/B' substitutional disorder at the octahedral coordinated B sites. For instance, Ti/Mg disorder could explain the domains observed in the commensurate $Ba_{1,2}(Ti,Mg)_8O_{16}$ compound [Fanchon E. et al. (1987) Acta Cryst. B, to be published]. In materials with a common B cation the conduction mechanism is complex since both ionic and electronic conduction occur.

We have studied some $A_x(Mn^{3+}, Mn^{4+})_8O_{16}$ hollandites stabilized by partial occupation of the tunnels by A cations such as K⁺, Rb⁺, Ag⁺, Pb²⁺, (K⁺, H₃O⁺). Under the synthesis conditions used, one dimensional order occurs with no correlation between adjacent tunnels in K⁺ and Rb⁺ compounds, and the modulation wave vector of the A-vacancy intra-tunnel order is commensurate : q^{*} = c^{*}/3. With Pb²⁺, an inter-tunnel short range order exists and the modulation along the tunnel corresponds to the incommensurate value q^{*} ~ 0.24c^{*}. The (K⁺, H₃O⁺) compound exhibits diffuse planes in electron diffraction pattern ; powder neutron diffraction data show an additional nuclear or magnetic short-range ordering between 100 K and 4.2 K. The latter compound and K_{1.33}Mn₈O₁₆ have an antiferromagnetic ordering at 11 K and 18 K respectively [Strobel P., Vicat J. and Tran Qui D., (1984) J.S.S.C. <u>55</u>, 67-73].

Single crystals of caesium titanate are three-dimensionally ordered at room temperature, with a 2a x 2a x 2c face centered cell. Electron and X-ray diffraction studies show a reversible order-disorder transition near 320°C with no significant hysteresis. Over the small temperature range at the transition, the sharp superlattice spots are progressively replaced by diffuse planes with q* = 0.5 c*. From the value of the modulation wave vector length q*, the composition of the crystals studied is Cs+Ti³⁺Ti⁴⁺₇O₁₆. This compound was found to be semiconducting at room temperature with $\rho = 0.42 \ \Omega$ cm [Reid A.F. and Watts J.A. (1970) J.S.S.C. <u>1</u>, 310-318]. The structural transition can be related to the localisation of the 3d electrons of Ti³⁺ and/or caesium ordering. We can compare this transition to the known electrical and structural transitions in thanium oxides (Ti₄O₇...), the structures of which are closely related to that of rutile.

We are grateful to Dr. Ian Grey for useful discussion.