
05.

05.1-10 CONFORMATIONAL ORDERING IN TETRAHEDRAL ZWEIER SINGLE CHAINS: FOUR SUCCESSIVE PHASE TRANSITIONS IN KPO<sub>3</sub>. By <u>W.W. Schmahl</u>, Mineralogisches Institut der Universität <u>Kiel</u>, West Germany.

Zweier single chains of (corner linked) identical rigid tetrahedra have 3 conformational degrees of freedom. All conformations may be derived from the chain of aristotype symmetry (line group  $2_1/\text{mmg}$ , Fig.1) by variation of 3 parameters, such as  $\phi$ ,  $\tau_1$  and  $\tau_2$  (Fig. 2). These parameters are defined in a way to reflect the symmetry of the chain. The aristotype symmetry with  $\varphi$  =  $au_1$  =  $au_2$ =0 may only exist as a space and time average because of the non-zero thermal displacements at any temperature. The phase transitions of potassium polyphosphate, KPO  $_3$ , illustrate several ways of conformational ordering reducing the chain symmetry. The evolution and interaction of the ordering mechanisms was monitored by DSC, bire-fringence measurements and single crystal diffractome-try. From the melt the phase KPO<sub>3</sub>-HT crystallizes at 1111 K with space group Bbmm corresponding to the aristotype symmetry of the phosphate zweier single chains which run parallel to <u>b</u>. However, large statistical displacements from a symmetric arrangement lead to "split" atomic positions (JOST & SCHULZE, Acta Cryst., 1971, 1345-1369). On cooling this phase transforms at 922  $\overline{K}$  to  $KPO_3$ -H, Ponm, due to antiferro-type ordering of the parameter  $\phi$  in neighbouring chains. The mirror planes perpendicular to the chain are lost, but there is still a mirror plane parallel to the chain, i.e. a mirror plane parallel to the chain, i.e.  $\langle \tau_i \rangle = \langle \tau_i \rangle = 0$ . At a second phase transition at 768 K additional ordering with respect to the T-type degrees of freedom sets in. In this third phase (KPO3-H', P212121) the chains are characterised by  $\langle \phi \rangle \neq 0$ ,  $\langle \chi_1 = \chi_2 \rangle \neq 0$ , and chain-symmetry 21. On further cooling the  $\chi_1 = \chi_2 \rangle \neq 0$ , and chain-symmetry 21. On further cooling the  $\chi_1 = \chi_2 \rangle \neq 0$ , and chain-symmetry 21. On further cooling the  $\chi_1 = \chi_2 \rangle \neq 0$ , and chain-symmetry 21. On further cooling the  $\chi_1 = \chi_2 \rangle \neq 0$ , and chain-symmetry 21. On further cooling the  $\chi_1 = \chi_2 \rangle \neq 0$ , and chain-symmetry 21. On further cooling the  $\chi_1 = \chi_2 \rangle \neq 0$ , and chain-symmetry 21. On further cooling the  $\chi_1 = \chi_2 \rangle \neq 0$ , and chain-symmetry 21. On further cooling the  $\chi_1 = \chi_1 = \chi_2 \rangle \neq 0$ , and chain-symmetry 21. On further cooling the  $\chi_1 = \chi_2 \rangle \neq 0$ , and chain-symmetry 21. On further cooling the  $\chi_1 = \chi_2 \rangle \neq 0$ , and chain-symmetry 21. On further cooling the  $\chi_1 = \chi_2 \rangle \neq 0$ , and chain-symmetry 21. On further cooling the  $\chi_1 = \chi_2 \rangle \neq 0$ , and chain-symmetry 21. On further cooling the  $\chi_1 = \chi_2 \rangle \neq 0$ , and chain-symmetry 21. On further cooling the  $\chi_1 = \chi_2 \rangle \neq 0$ , and chain-symmetry 21. On further cooling the  $\chi_1 = \chi_2 \rangle \neq 0$ , and chain-symmetry 21. On further cooling the  $\chi_1 = \chi_2 \rangle \neq 0$ , and chain-symmetry 21. On further cooling the  $\chi_1 = \chi_2 \rangle \neq 0$ , and chain-symmetry 21. On further cooling the  $\chi_1 = \chi_2 \rangle \neq 0$ , and chain-symmetry 21. On further cooling the  $\chi_1 = \chi_2 \rangle \neq 0$ , and chain-symmetry 21. On further cooling the  $\chi_1 = \chi_1 = \chi_2 = \chi_1 = \chi_2 = \chi_2 = \chi_1 = \chi_2 = \chi_2 = \chi_1 = \chi_1 = \chi_2 = \chi_2 = \chi_1 = \chi_2 = \chi_1 = \chi_2 = \chi_2 = \chi_1 = \chi_2 = \chi_2 = \chi_1 = \chi_2 = \chi_1 = \chi_2 = \chi_1 = \chi_2 = \chi_2 = \chi_2 = \chi_1 = \chi_2 = \chi$ The  $\varphi$ -ordering pattern is still preserved but no conformational symmetry except the repeat period is kept . However, the distortion corresponding to the new T14  $\mathcal{T}_2$ -ordering mechanism creates a monoclinic shear strain which makes the existing arphi-ordering pattern unstable with respect to a more complicated antiferro-type ordering pattern of the parameter  $\varphi$ . Thus there is another first order transition at 524 K to the phase KPO $_3$ -T,  $P2_1/a$ , where a new  $\varphi$ -ordering pattern is created while the  ${\mathcal T}$  -ordering mechanism characterizing the Z-phase continues without substantial change. The paraphase of KPO3-T is KPO3-HT.



05.1-11 ELECTRON DIFFRACTION STUDIES OF MIXED VALENCE HOLLANDITES AND STRUCTURAL TRANSITION IN CsTi<sub>8</sub>O<sub>16</sub>. By J.L. Hodeau, E. Fanchon, J. Vicat, P. Strobel and J.A. Watts\*, Laboratoire de Cristallographie, associé à l'U.S.T.M.G., C.N.R.S., 166 X, 38042 Grenoble Cedex (France). \*Division of Mineral Chemistry, C.S.I.R.O., Melbourne, Australia.

Hollandite type phases  $A_x(B,B')_8O_{16}$  with mixed valence framework cations (B and B' are the same atoms with different valencies) are useful materials for the study of inter- and intratunnel A-vacancy ordering, because there is no B/B' substitutional disorder at the octahedral coordinated B sites. For instance, Ti/Mg disorder could explain the domains observed in the commensurate  $Ba_{1,2}(Ti,Mg)_8O_{16}$  compound [Fanchon E. et al. (1987) Acta Cryst. B, to be published]. In materials with a common B cation the conduction mechanism is complex since both ionic and electronic conduction occur.

We have studied some  $A_x(Mn^3+,Mn^4+)_8O_{16}$  hollandites stabilized by partial occupation of the tunnels by A cations such as K+, Rb+, Ag+, Pb²+, (K+, H<sub>3</sub>O+). Under the synthesis conditions used, one dimensional order occurs with no correlation between adjacent tunnels in K+ and Rb+ compounds, and the modulation wave vector of the A-vacancy intra-tunnel order is commensurate :  $q^* = c^*/3$ . With Pb²+, an inter-tunnel short range order exists and the modulation along the tunnel corresponds to the incommensurate value  $q^* \sim 0.24c^*$ . The (K+, H<sub>3</sub>O+) compound exhibits diffuse planes in electron diffraction pattern ; powder neutron diffraction data show an additional nuclear or magnetic short-range ordering between 100 K and 4.2 K. The latter compound and K<sub>1.33</sub>Mn<sub>8</sub>O<sub>16</sub> have an antiferromagnetic ordering at 11 K and 18 K respectively [Strobel P., Vicat J. and Tran Qui D., (1984) J.S.S.C. <u>55</u>, 67-73].

Single crystals of caesium titanate are three-dimensionally ordered at room temperature, with a 2a x 2a x 2c face centered cell. Electron and X-ray diffraction studies show a reversible order-disorder transition near 320°C with no significant hysteresis. Over the small temperature range at the transition, the sharp superlattice spots are progressively replaced by diffuse planes with  $q^{*}=0.5$  c\*. From the value of the modulation wave vector length  $q^{*}$ , the composition of the crystals studied is Cs+Ti³+Ti⁴+ $_{7}O_{16}$ . This compound was found to be semiconducting at room temperature with  $\rho=0.42~\Omega$  cm [Reid A.F. and Watts J.A. (1970) J.S.S.C. 1, 310-318]. The structural transition can be related to the localisation of the 3d electrons of Ti³+ and/or caesium ordering. We can compare this transition to the known electrical and structural transitions in titanium oxides (Ti₄O\_7...), the structures of which are closely related to that of rutile.

We are grateful to Dr. Ian Grey for useful discussion.