There have been many structural studies of one-dimensional superlattices grown by the molecular beam epitaxial (MBE) method. \(\ldots \)

The authors wish to express their thanks to N. Sano, H. Kato, M. Nakayama, H. Iwasaki, T. Matsuhashi, J. Harada, Y. Kashihara, K. Kashigawara, Y. Fujii, Y. Moudu, and Y. Yamanoh for their fruitful discussion. The work has been supported by the Yamada Science Foundation.

Small clusters draw much attention because of their specific structures and physical properties. Electron microscope observations of them have been limited to sizes of 10 - 100 nm, except recent ones by Iijima. We have recently succeeded in revealing structural change of gold atomic clusters growing on a graphitized carbon using a high resolution UV electron microscope designed for in-situ study at 10 Torr level (K. Takayanagi et al., Proc. Xth ICM, Kyoto, 1986). Profile images were recorded on VTR and reproduced on a 16 mm cinefilm. We recognized dark dots forming a Fibonacci sequence. They have some of the unique properties of the novel structure. Here we report the first realization of a quasiperiodic superlattice, where the ratio of alternating layers of GaAs and AlAs forms a Fibonacci sequence. They have some of the unique properties of the novel structure. Here we report the first realization of a configurational Fibonacci superlattice grown by MBE, where the ratio of alternating layers of GaAs and AlAs is the same. The self-similarity of our clusters will be discussed. The synchrotron x-ray studies of our clusters will also be reported at the Congress.

The authors wish to express their thanks to N. Sano, H. Kato, M. Nakayama, H. Iwasaki, T. Matsuhashi, J. Harada, Y. Kashihara, K. Kashigawara, Y. Fujii, Y. Moudu, and Y. Yamanoh for their fruitful discussion. The work has been supported by the Yamada Science Foundation.