A HIGH RESOLUTION X-RAY DIFFRACTOMETRIC AND TOPOGRAPHIC STUDY OF ELECTRON-LATTICE INTERACTION DURING TWO DIMENSIONAL CONDUCTION IN SILICON MOSFET'S (KLITZING ELEMENTS). By Krishan Lal, Peter Thoma*, S. Niranjana N., Goswami, Vijay Kumar, S.K. Hailer and M. Thiemig*. National Physical Laboratory, Hillside Road, New Delhi 110 012, India.

Charge carrier-lattice interaction during normal conduction in silicon single crystals has been successfully studied by using high resolution X-ray diffractometry and topography (e.g. Krishan Lal and S. Niranjana N. Goswami, Physical Letters 147, 1986). Here, results of a similar study on Si MOSFET's by using the same techniques are reported. The specimen MOSFET's were parts of 3 x 4 mm² chips with nine devices and dimensions : 3.6 x 0.36 mm². The flat surfaces of the silicon substrates were along (001) planes.

During operation of the device a gate field of 26V and a source to drain current of 70 µA were applied. Triple crystal X-ray diffractometers were used in the configuration (111)/(220). The first two crystals are plane Si monochromators with diffracting surfaces along (111) planes. These help in obtaining highly collimated and monochromated Kα, exploring X-ray beams. The specimen is the third crystal aligned in the Bragg geometry. Experiments were performed with [004] (for [CuKα1] and [008] for [MoKα]) diffracting planes. Diffraction curves, curvature plots and high resolution traverse topographs were recorded before, during and after the two dimensional conduction. Different azimuthal orientation of the chip were used. The diffraction curves show a small but measurable change in the shape when the device is conducting. In the topographs, small changes in the contrast could be observed. The changes in the contrast have been evaluated by microdensitometric examination of the topographs. These results show that there is a strong coupling between the charge carriers and the crystal lattice even when a small (70 µA) two dimensional electric current flows through the device. Traverse topographs were also recorded while maintaining the glancing angle of the crystal at the half intensity point of the diffraction curve, before and during conduction. This leads to higher sensitivity and, therefore, stronger changes in the contrast are observed.

We are grateful to Dr. Dorda of Siemens AG, München for supplying the devices.


Sputtered amorphous Mo/Si multilayers, with a composition modulation period of ~0.8 nm and a Mo/Si atomic ratio of ~0.6, were annealed at temperatures between 200 and 1000°C. Part of the specimens had a polycrystalline Si layer between the oxidized <100>-Si substrate and the Mo/Si multilayer. The changes in the amorphous and crystalline state were studied by X-ray diffraction and Rutherford backscattering.

From the multilayer only the (000) first order satellite, originating from the composition modulation, was observed. Diffusion coefficients of the amorphous state were derived from the decay of the integrated intensity of the satellite after annealing at temperatures below the crystalization temperature (350°C); structural relaxation was taken into account.

Above 350°C, hexagonal MoSi2, MoSi, and tetragonal MoSi2 were formed sequentially on increasing the temperature. RBS suggested a homogeneous nucleation of hexagonal MoSi2, whereas MoSi, developed only at the polycrystalline Si/multilayer interface and at the outer surface. Si from the polycrystalline Si layer diffused into the multilayer and eventually a complete conversion of MoSi4 into MoSi2 occurred.

The microstructural perfection, indicated by diffraction-line broadening, improved considerably during the anneals. The decrease of the electrical resistivity (to 0.6 µm) correlated with the formation of crystalline phases in the multilayer and with the improvement of the crystalline perfection.

X-RAY DOUBLE CRYSTAL ROCKING CURVES AND INTERFACE SHAPE IN III-V HETEROSTRUCTURES. By C. Bocchi, C. Ferrari, P. Franzosi, Istituto NASPEC-CNR, Parma, Italy.

The double crystal diffractometry (DCD) is a powerful X-ray technique for assessing III-V compound heterostructures. DCD was mainly used to measure the lattice mismatch between epilayers and substrate to evaluate in a qualitative way the epilayer crystal quality. Recently, theoretical models for the calculation of DCD rocking curves (RCs) have been developed (M.A.G. Halliwell et al., J. Crystal Growth 65, 672 (1983)). By comparing experimental and calculated RCs, quantitative information on the layer thickness, angle curvature and composition gradient along the growth axis can be obtained. In the present work, the possibility of studying the interface shape by DCD measurements has been tested. Computer simulations of 004 RCs, following the Halliwell's method, show that Pendellosung fringes strongly depend on the transient composition layer close to the interface. More precisely, when an abrupt interface is considered, nearly symmetric fringes are found at both sides of the epilayer Bragg peak. On the contrary, when a graded interface is assumed, the fringe appearance is symmetric. Simple criteria to deduce from the fringe asymmetry the interface shape have been determined.

004 DCD RCs have been experimentally measured in GaAlAs/ GaAs and InGaAs/InP single heterostructures grown by molecular beam epitaxy. A good fit between experimental and calculated RCs has been obtained when the correct interface shape was assumed.