07.3-1 PHASE DIAGRAM OF THE TETRAGONAL TO ORTHO-
ROMBOEDRIC STRUCTURAL TRANSITION IN La$_{2}$Sr$_{2}$CuO$_{4}$
By R. Maquet, J.P. Pouyet and R. Comes, Laboratoire de Phy-
sique des Solides, Université Paris Sud, Orsay, France and
G. Collin, UA 200, Université René Descartes, Paris, France.

The relation between structural and superconducting inst-
bilities is considered to play a crucial role in the
behaviour of the new high Tc superconductors. In the
La$_{2}$Sr$_{2}$CuO$_{4}$ materials it is usually admitted that
the effort of Sr alloying to La is to suppress the orthorhom-
bic distortion present in LaCuO$_{2}$ and to stabilize the
tetragonal phase which is superconducting.

We report here an x-ray scattering study of the struc-
tural phase diagram of La$_{2}$Sr$_{2}$CuO$_{4}$. For x = 0.12 a low T
single crystal study reveals a tetragonal to orthorhombic
transition at T$_{c}$ = 215 ± 5 K. The intensity of the asso-
ciated superstructure reflections and the orthorhombic
distortion (c-a) (space group Cmca) were measured down to
12 K. Precursor diffuse scattering is observed up to
room temperature and it is quasi-isotropic. Supplementary
powder diffraction data for x = 0.05 and 0.09 allow to
construct a phase diagram of the tetragonal to orthorho-
bmic distortion (see figure). From this result one can
conclude that superconductivity (observed in the bated
region) coexists with the orthorhombic distortion in
a broad concomitance range, in contrast with previous
hypotheses.

07.3-2 HIGH RESOLUTION SYNCHROTRON X-RAY STUDY OF
La$_{2}$Sr$_{2}$CuO$_{4}$
(Y. M. Hong, V. R. Thakkar, K. Forster.
Physics Department, University Of Houston, Houston, TX 77004, USA; J. D. Axe, K. You, D. Hochstein, D. E.
Coa, National Synchrotron Light Source, Brookhaven National Laboratory, Upton, NY 11973, USA; P. N. Hor,
K. L. Ming and C. W. Chu, Physics Department, University Of Houston, Houston, TX 77004, USA.

High resolution x-ray diffraction of La$_{2}$Sr$_{2}$CuO$_{4}$
(M = Ba, Sr) reveals two macroscopically segregated
phases of the ortho-II type with nearly identical lattice
parameters. In the Sr-substituted material the minor
phase shows considerably broader Bragg peaks than the
major phase and it occurs in substantial amounts. The
two phases are associated with phase separation within a
nominally single phase field and are presumably
sensitive to oxygen and/or thermal treatment. In a
detailed study of La$_{1.98}$Sr$_{0.02}$CuO$_{4}$, several peaks showed
additional broadening on cooling. This broadening is
consistent with a small spontaneous monoclinic
distortion, with an onset temperature of ~150K, which is
possibly relevant to the superconducting properties.
Small single crystals within the powder aggregate are
also studied and show a similar two-phase constituency
and a resolvable peak splitting at low temperature.

*Research supported by NSF DMR-8603662
**Permanent address: Institute of Crystallography,
University of Tübingen, 74 Tübingen, W. Germany
***Supported by US DOE, DMS contract DE-AC03-76CH00016

07.3-3 NEUTRON AND SYNCHROTRON X-RAY POWDER STUDIES
OF A HIGH IONIC CONDUCTOR SYSTEM: Li$_{1+}^{+}$Ti$_{1-}^{3+}$In$_{x}$P$_{2}$O$_{7}$
by D. Tran Quy, S. Handoune, E. Prince and D. Cox
Laboratoire de Cristallographie, Centre National de la
Recherche Scientifique, Laboratoire associe à l'USNM,
B. P. 165x, 38042 Grenoble-Cedex, FRANCE
Institute for Materials Science and Engineering,
National Bureau of Standards, Gaithersburg, MD 20899,
U. S. A.
Department of Physics, Brookhaven National Laboratory,
Upton, NY 11973, U. S. A.

It was recently reported that Li$_{1+}^{+}$Ti$_{1-}^{3+}$In$_{x}$P$_{2}$O$_{7}$ solid
solutions exhibit high ionic conductivity. This conduc-
tivity increases rapidly with increasing values of x,
Armstrong plots of log e(1/|x|) versus the reciprocal of
the absolute temperature show three extrema, 2x*10$^{-2}$,
3x*10$^{-6}$ and 8x*10$^{-3}$ (amm) for x = 0.35, 1.0 and 1.8, respectively. It was also found that, depending on
the substitution parameter x, the compounds in this solid
solution adopt three structure types, corresponding to
three different phases: Phase I is in the region 0 < x < 0.4,
Phase II in 0.4 < x < 1.0 and Phase III in 1.0 < x < 2.0. The x values corresponding to the maximum
and minimum conductivities coincide approximately with Phase
transition boundaries.

In this paper results of our efforts to correlate struc-
tural changes with conductivity behaviour are presented:
a) Single crystal structure studies of Li$_{1+}^{+}$Ti$_{1-}^{3+}$In$_{x}$P$_{2}$O$_{7}$ compounds with x = 0.6, 0.9, 1.0,
1.8 and 2.0 indicate that structure framework of com-
pounds in phase I is an A_B, Nasicon-type structure.

Further insertion of trivalent In$^{3+}$ ions induces much
more complicated structural changes: compounds in phases
II and III are found to be orthorhombic, Pbca, and
monoclinic, P2_1/n, respectively. Crystal structures in
phases I, II and III, and their relationships, are
described.

b) Neutron powder refinements of highly conducting,
polyocrystalline samples with nominal compositions
x = 0.25, 0.40 and 0.95 indicate that lithium in the
large eight-coordinated sites are in a highly disordered
configuration, occupying only 65% of the site capacity,
while the low energy octahedral sites are 95% filled.

Such a site distribution, which is unfavorable for fast
ionic diffusion, may change in the highly conducting
state: transfer of Li ions from octahedral sites into
the large cavities is therefore expected at high tem-
perature. Results of studies of site occupancies and
structural changes as a function of temperature, at 40,
200, 600 and 800 K, along with electrical properties
will be discussed.

c) Neutron studies have also suggested the existence of
a parasitic phase in the Li$_{1+}^{+}$Ti$_{1-}^{3+}$In$_{x}$P$_{2}$O$_{7}$ solid
solution. This phase could not, however, be readily
identified. Due its exceptionally high resolution a
synchrotron x-ray diffraction pattern of
Li$_{1.25}$Ti$_{1.75}$In$_{0.25}$P$_{2}$O$_{7}$ shows 26 extra reflections, well
resolved from the expected lines. Rietveld refinement
applied to the x-ray pattern confirms a neutron observa-
tion that the observed Ti/In ratio is substantially
lower than it should be according to the chemical
analysis. These extra reflections are indexed, and a
space group and a solution of the crystal structure of
this unwanted phase are proposed.