08.2-3 THE CRYSTAL STRUCTURE OF A NEW COBALT OXIDE SULFATE,  $Bi_2CoO_3SO_4$ . By I.A. Fanariotis and <u>P.J.Rentzeperis</u>, Applied Physics Laboratory, Aristotle University of Thessaloniki, Thessaloniki, Greece.

The crystal structure of  $\mathrm{Bi}_2\mathrm{CoO}_3\mathrm{SO}_4$  was determined within the framework of a systematic study of the various phases in the system  $\mathrm{CoSO}_4$ - $\mathrm{Bi}_2\mathrm{O}_3$ , prepared under different conditions.

The compound was synthesized in a crystalline form by heating a mixture of CoSO<sub>4</sub> and Bi<sub>2</sub>O<sub>3</sub>. The crystal structure has been determined from three-dimensional X - Ray diffraction data, collected on a computer-controlled Philips PW 1100 single crystal diffractometer (845 observed reflections). The crystals are orthorhombic, Pbem,  $\alpha$  = 7.123(2), b = 15.762(4), c = 5.416(2)Å, Z=4. The positional and thermal parameters were refined by full -matrix, least-squares calculations, to a final R=0.042. The structure in layered, with  $\{Bi_2CoO_3\}_n$  layers normal to the  $\alpha$  axis, interlinked by SO<sub>4</sub> groups (Fig. 1).

The Bi atoms, located by MULTAN, occupy two different positions and are seven coordinated, by four O atoms belonging to the layer and forming with them square pyramids (average distances : Bi(1) - 0 = 2.255 and Bi(2) - 0 = 2.245 Å) and three O atoms of the sulfate groups (average distances : Bi(1)-0=2.79 and Bi(2)-0=2.95 Å). The Bi-0 bonds to the latter may be considered as secondary bonds. The Co atom is six coordinated by four 0 atoms, again belonging to the layer, at the base of a square pyramid (average Co-0=2.07Å) and two further 0 atoms of the sulfate group at a distance 2.41Å. The six O atoms form a trigonal prism. The coordination of the 0 atoms in a layer is tetrahedral. Distances and angles are normal. The SO4 tetrahedron is only slightly distorted with an average S-0=1.47Å. The layered structure explains very well the plate-like growth of the crystals normal to a.



Fig. 1. Clinographic projection along the c axis.

08.2-4 CRYSTAL STRUCTURES OF SEVEN CADMIUM SELENITES. By J. Valkonen, University of Jyväskylä, Department of Chemistry, SF-40100 Jyväskylä, Finland.

Seven cadmium selenite compounds have been synthesized and their crystal structures have been solved using direct methods and least squares refinement.  $\alpha$ -CdSeO<sub>3</sub> was found to be isomorphous with corresponding Mg, Mn, Co, Ni, Cu and Zn selenites (Kohn, Inoue, Horie and Akimoto, J. Solid State Chem. 1976,  $\underline{18}$ , 27).

| Formula                                                                            | a(Å)   | ь(Å)   | c(Å)   | β( <sup>0</sup> ) | z | SPGR               |
|------------------------------------------------------------------------------------|--------|--------|--------|-------------------|---|--------------------|
| α-CdSeO <sub>3</sub>                                                               |        |        | 5.293  |                   |   | Pnma               |
| β-CdSeO <sub>3</sub>                                                               | 5.708  | 12.828 | 8.585  | 101.21            | 8 | P2 <sub>1</sub> /c |
| $CdSe\hat{O}_3 * \frac{3}{4} H_2 O$                                                | 9.470  | 8.763  | 10.141 | 117.38            | 8 | P2 <sub>1</sub>    |
| CdSe <sub>2</sub> O <sub>5</sub>                                                   | 8.024  | 11.319 | 6.020  | 119.38            | 4 | C2/c               |
| Cd <sub>3</sub> (HSeO <sub>3</sub> ) <sub>2</sub> (SeO <sub>3</sub> ) <sub>2</sub> | 9.405  | 9.147  | 7.284  | 112.62            | 2 | P2 <sub>1</sub> /c |
| (NH <sub>4</sub> ) <sub>2</sub> Cd(SeO <sub>3</sub> ) <sub>2</sub>                 | 5.714  | 5.714  | 20.033 |                   | 3 | R3                 |
| Cd(NH <sub>3</sub> )SeO <sub>3</sub>                                               | 13.306 | 6.136  | 5.125  | ,                 | 4 | Рпта               |

Coordination number of cadmium is six in all compounds except  $\text{Cd}_3(\text{HSeO}_3)_2(\text{SeO}_3)_2$ . This has two different cadmium atoms with coordination numbers 6 and 7. Coordination polyhedron is octahedron for all six coordinated cadmium atoms except  $\beta\text{-CdSeO}_3$ , in which it is trigonal prism. Seven coordinated cadmium forms monocapped trigonal prism. Octahedra around cadmium atoms in  $\text{CdSeO}_3^{*\frac{3}{4}}\text{H}_2\text{O}$  are very distorted.

| Formula                                                            | R(%) | N<br>ref | N<br>as | Cd-0(Å) | Se-0(Å) |
|--------------------------------------------------------------------|------|----------|---------|---------|---------|
| α-CdSeO <sub>3</sub>                                               | 2.1  | 730      | 1       | 2.33    | 1.71    |
| β-CdSeO <sub>3</sub>                                               | 4.4  | 2826     | 2       | 2.31    | 1.69    |
| CdSeO3*3H2O                                                        | 2.4  | 3652     | 4       | 2.30    | 1.70    |
| CdSe <sub>2</sub> 0 <sub>5</sub>                                   | 2.8  | 1242     | 1       | 2.29    | 1.66    |
| Cd3(HSeO3)2(SeO3)2                                                 | 3.4  | 2553     | 2       | 2.35    | 1.70    |
| (NH <sub>4</sub> ) <sub>2</sub> Cd(SeO <sub>3</sub> ) <sub>2</sub> | 1.2  | 293      | 1       | 2.32    | 1.69    |
| Cd(NH <sub>3</sub> )SeO <sub>3</sub>                               | 2.0  | 831      | 1       | 2.33    | 1.69    |

 $N_{ref}$  = number of refined reflections (I>3\* $\sigma$ (I))  $N_{as}$  = number of asymmetric Cd and Se atoms

Previous table shows average Cd-O and Se-O distances, but it does not contain diselenite Se-O(-Se) or hydrogenselenite Se-O(-H) distances, which are 1.80 and 1.75 Å, respectively.

All compounds form three-dimensional network. NH<sub>3</sub> group in Cd(NH<sub>3</sub>)SeO<sub>3</sub> is coordinated to cadmium. Cd-N distance is 2.30 Å. NH<sub>4</sub> in (NH<sub>4</sub>)<sub>2</sub>Cd(SeO<sub>3</sub>)<sub>2</sub> is not coordinated to cadmium.