CRYSTALLINE AND MOLECULAR STRUCTURE OF (2-MERCAPTOBENZOXALATE) MERCURIC(II) (C) AND (2-MERCAPTOBENZOXALATE) PHENYLHERCURIC(II). By T.P. Mascarenhas, IPQGT/USP, C.P. 369, 13590, São Carlos, S.P., Brazil; X. Tomica, IQ-Araquara, C.P. 174, 14800, Araquara, S.P., Brazil; S.P., Brazil; C.O.P. Santos, UNESP = Presidente Prudente, 19100, Presidente Prudente, S.P., Brazil; J.S. Gomes, Dep. of Inorganic Chemistry, School of Pharmacy, U. of Santiago, Galicia, Spain.

The X-ray structure determinations were performed with the purpose of elucidate if the intramolecular secondary bond of Hg involved either the endocyclic nitrogen or oxygen. Furthermore, it is also of interest, to consider the role of these complexes in agricultural environments if we recall that the ligand itself is a fungicide, has bacteriostatic activity and is a regulator of plants growth. (Preti, C., Tesi, G. - J. Inorg. Nucl. Chem., 18, 1125 (1976)). Thus, it is quite possible that the organometalic contaminant of the environment and this ligand used in agriculture may naturally interact.

Crystal data for the phenyl Hg(II) complexes (A): C_2 H_9 NO Hg, M.W. = 411.34, triclinic, PT, a = 10.677(2), b = 11.176(3), c = 11.445(3), \(\alpha = 99.4-9 \) CRYSTALLINE MOLECULAR STRUCTURE OF K. Tomita, IQ-Araquara, C.P. 174, 14800, Araquara, S.P., Brazil; C.O.P. Santos, UNESP = Presidente Prudente, 19100, Presidente Prudente, S.P., Brazil; J.S. Gomes, Dept. of Inorganic Chemistry, School of Pharmacy, U. of Santiago, Galicia, Spain.

The X-ray structure determinations were performed with the purpose of elucidate if the intramolecular secondary bond of Hg involved either the endocyclic nitrogen or oxygen. Furthermore, it is also of interest, to consider the role of these complexes in agricultural environments if we recall that the ligand itself is a fungicide, has bacteriostatic activity and is a regulator of plants growth. (Preti, C., Tesi, G. - J. Inorg. Nucl. Chem., 18, 1125 (1976)). Thus, it is quite possible that the organometalic contaminant of the environment and this ligand used in agriculture may naturally interact.

Crystal data for the phenyl Hg(II) complexes (A): C_2 H_9 NO Hg, M.W. = 411.34, triclinic, PT, a = 10.677(2), b = 11.176(3), c = 11.445(3), \(\alpha = 99.4-9 \) CRYSTALLINE MOLECULAR STRUCTURE OF K. Tomita, IQ-Araquara, C.P. 174, 14800, Araquara, S.P., Brazil; C.O.P. Santos, UNESP = Presidente Prudente, 19100, Presidente Prudente, S.P., Brazil; J.S. Gomes, Dept. of Inorganic Chemistry, School of Pharmacy, U. of Santiago, Galicia, Spain.

The X-ray structure determinations were performed with the purpose of elucidate if the intramolecular secondary bond of Hg involved either the endocyclic nitrogen or oxygen. Furthermore, it is also of interest, to consider the role of these complexes in agricultural environments if we recall that the ligand itself is a fungicide, has bacteriostatic activity and is a regulator of plants growth. (Preti, C., Tesi, G. - J. Inorg. Nucl. Chem., 18, 1125 (1976)). Thus, it is quite possible that the organometalic contaminant of the environment and this ligand used in agriculture may naturally interact.

Crystal data for the phenyl Hg(II) complexes (A): C_2 H_9 NO Hg, M.W. = 411.34, triclinic, PT, a = 10.677(2), b = 11.176(3), c = 11.445(3), \(\alpha = 99.4-9 \) CRYSTALLINE MOLECULAR STRUCTURE OF K. Tomita, IQ-Araquara, C.P. 174, 14800, Araquara, S.P., Brazil; C.O.P. Santos, UNESP = Presidente Prudente, 19100, Presidente Prudente, S.P., Brazil; J.S. Gomes, Dept. of Inorganic Chemistry, School of Pharmacy, U. of Santiago, Galicia, Spain.

The X-ray structure determinations were performed with the purpose of elucidate if the intramolecular secondary bond of Hg involved either the endocyclic nitrogen or oxygen. Furthermore, it is also of interest, to consider the role of these complexes in agricultural environments if we recall that the ligand itself is a fungicide, has bacteriostatic activity and is a regulator of plants growth. (Preti, C., Tesi, G. - J. Inorg. Nucl. Chem., 18, 1125 (1976)). Thus, it is quite possible that the organometalic contaminant of the environment and this ligand used in agriculture may naturally interact.

Crystal data for the phenyl Hg(II) complexes (A): C_2 H_9 NO Hg, M.W. = 411.34, triclinic, PT, a = 10.677(2), b = 11.176(3), c = 11.445(3), \(\alpha = 99.4-9 \) CRYSTALLINE MOLECULAR STRUCTURE OF K. Tomita, IQ-Araquara, C.P. 174, 14800, Araquara, S.P., Brazil; C.O.P. Santos, UNESP = Presidente Prudente, 19100, Presidente Prudente, S.P., Brazil; J.S. Gomes, Dept. of Inorganic Chemistry, School of Pharmacy, U. of Santiago, Galicia, Spain.

The X-ray structure determinations were performed with the purpose of elucidate if the intramolecular secondary bond of Hg involved either the endocyclic nitrogen or oxygen. Furthermore, it is also of interest, to consider the role of these complexes in agricultural environments if we recall that the ligand itself is a fungicide, has bacteriostatic activity and is a regulator of plants growth. (Preti, C., Tesi, G. - J. Inorg. Nucl. Chem., 18, 1125 (1976)). Thus, it is quite possible that the organometalic contaminant of the environment and this ligand used in agriculture may naturally interact.